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Abstract—In this paper, we introduce a new cryptographic primitive, called autonomous path proxy re-encryption (AP-PRE), which is

motivated by several application scenarios where the delegator would like to control the whole delegation path in a multi-hop delegation

process. Compared with the traditional proxy re-encryption, AP-PRE provides much better fine-grained access control to delegation

path. Briefly speaking, in an AP-PRE scheme, the delegator designates a path of his preferred delegatees. The path consists of several

delegatees with the privilege from high to low. If the delegatee in the path cannot complete the decryption, the decryption right is

automatically delegated to the next one in the path. In this way, the delegator can ensure that the delegation has always been done

among those delegatees the delegator trusts. Moreover, an AP-PRE scheme has to obey the following path rules. The delegation, for

ciphertexts of a delegator i, can only be carried out on the autonomous path Pai designated by the delegator i, in the sense that (1)

re-encrypted ciphertexts along the autonomous path Pai cannot branch off Pai with meaningful decryption, and (2) original ciphertexts

generated under pkj for j 6¼ i (i.e., for a path Paj different from Pai) cannot be inserted into (i.e., cannot be transformed along) the

autonomous path Pai with meaningful decryption. We give the formal definition, as well as the formal security model, for this

cryptographic primitive. Under this concept, we construct an IND-CPA secure AP-PRE scheme under the decisional bilinear Diffie-

Hellman (DBDH) assumption in the random oracle model. Our scheme is with the useful properties of proxy re-encryption, i.e.,

unidirectionality and multi-hop.

Index Terms—Autonomous path, proxy re-encryption, unidirectional, multi-hop, IND-CPA, decisional bilinear Diffie-Hellman

Ç

1 INTRODUCTION

WHEN one is too busy to deal with all his encrypted files,
he may wish to delegate his decryption rights to some-

one he trusts. This delegation of the power to decrypt the
ciphertext [1] can be easily done if the delegator is online-sim-
ply decrypts the ciphertext and re-encrypts the plaintext with
the public key of whom he trusts. However, this is not always
practical, for the delegator may not be online all the time.
And, it is undesirable to just disclose the secret key to some
untrusted server to do the transformation of the ciphertext. To
solve the above mentioned problems, at Eurocrypt’98, Blaze,
Bleumer and Strauss [2] first proposed the concept of proxy
re-encryption (PRE). In a PRE scheme, a semi-trusted proxy
with some additional information (re-encryption key, which
is computed by the delegator in advance) can convert a
ciphertext computed under Alice’s (delegator’s) public-key
into one intended to Bob (delegatee) with the same plaintext.
The fundamental property of proxy re-encryption schemes is
that the proxy is not fully trusted, i.e., the proxy should not

know the secret keys of Alice or Bob, and should not learn the
plaintext during the conversion. Blaze et al. [2] gave two
methods to classify PRE schemes. One is according to the
allowed times of transformation. If the ciphertext can be trans-
formed more than one time, i.e., from Alice to Bob, then from
Bob to Carol, and so on, we call the PRE scheme multi-hop;
otherwise, it is single-hop. The other classification is accord-
ing to the allowed direction of the transformation. If the re-
encryption key can be used to transform the ciphertext from
Alice to Bob, and vice versa, we call the PRE scheme bidirec-
tional; otherwise, it is unidirectional.

A unidirectional PRE scheme is more practical than a bidi-
rectional one. However, construction of a unidirectional PRE
scheme is more difficult than that of a bidirectional one. It is
easily observed that any unidirectional PRE scheme can be
converted to a bidirectional one by running the former in both
directions. In many cases, the unidirectional PRE scheme is
especially needed. For example, the delegator delegates his
decryption rights to his delegatee, but the delegatee does not
always want to do the reverse delegation. Meanwhile, multi-
hop is an important and practical property for a PRE scheme.
For example, if a delegatee happens to be very busy, or just
cannot be online when he receives a re-encrypted ciphertext
from his delegator, he would like to delegate his decryption
rights to other delegatees. If the PRE scheme is single-hop,
then the delegatee cannot transform the re-encrypted file fur-
thermore. In this case, a multi-hop PRE is desired. PRE has
more attributes besides the above two, and the reader is
referred to [3], [4] formore details.

The multi-hop property of a PRE scheme is described in
Fig. 1. We note that, in Fig. 1, the delegator with public key
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pk0 designates his delegatee pk1. The delegatee pk1 designa-
tes his own delegatee pk2. There is maybe no relationship
between pk0 and pk2, since no restrictions are specified
when pk1 selects his delegatee. In most of the practical
scenarios, the delegator is reluctant about his delegatee’s
selection. The delegator may want to designate another del-
egatee by himself if his delegatee pk1 is unable to decrypt
the ciphertext. We also find that the more times the PRE
scheme hops, the lower the trust degree becomes between
the delegator and the delegatee. It is thus desirable to con-
struct a flexible PRE scheme, where the delegator could con-
trol the next delegatee if the delegatee of his first choice is
unable to complete the delegation.

In order to meet the above discussed applications, in this
work we introduce a new cryptographic primitive, called
autonomous path proxy re-encryption (AP-PRE). Briefly
speaking, in an AP-PRE scheme, the delegator designates a
path of his preferred delegatees. The path consists of several
delegatees with the privilege from high to low. If the delega-
tee in the path cannot complete the decryption, the decryp-
tion right is automatically delegated to the next one in the
path. In this way, the delegator can ensure that the delega-
tion has always been done among those delegatees the dele-
gator trusts.

Moreover, an AP-PRE scheme has to obey the following
path rules. The delegation, for ciphertexts of a delegator i,
can only be carried out on the autonomous path Pai desig-
nated by the delegator i, in the sense that (1) re-encrypted
ciphertexts along the autonomous path Pai cannot branch
off Pai with meaningful decryption, and (2) original cipher-
texts generated under pkj for j 6¼ i (i.e., for a path Paj differ-
ent from Pai) cannot be inserted into (i.e., cannot be
transformed along) the autonomous path Pai with mean-
ingful decryption.

We give the formal definition, as well as the formal secu-
rity model, for this cryptographic primitive. Under this con-
cept, we construct an IND-CPA secure AP-PRE scheme
under the decisional bilinear Diffie-Hellman (DBDH)
assumption in the random oracle (RO) model. Our scheme
is with the useful properties of proxy re-encryption, i.e., uni-
directionality and multi-hop. Generally speaking, the hard-
ness in constructing an AP-PRE scheme lies in that, for the
transformed ciphertext, the delegator should have the abil-
ity to compute a re-encryption key; The re-encryption key is
used for the proxy to transform the re-encrypted ciphertext
under one of his delegatee’s public key to another delegatee,
while the delegator actually does not know the private key
of any of his delegatees.

1.1 Applications

In a traditional PRE, once the proxy holds a re-encryption
key from a delegator A to a delegatee B, it can transform all
the ciphertexts of A to B with the same messages. While, in
some special cases, this is not desired. So, some fine-grained

PREs are developed, such as conditional PREs [5], [6], [7],
and tag-based PREs [8]. An AP-PRE scheme is another fine-
grained PRE, which differs from the conditional PRE and
the tag-based PRE in the sense that it provides autonomous
path management. The following paragraphs list some
applications of AP-PRE.

� Electronic medical database: Many countries are using
national electronic medical database, and consider-
ing to put these big data in cloud. Now, we consider
the following scenarios: Patient A wants to make an
outpatient reservation in hospital H. A is sure to
have a doctor list beginning from his most favorite
doctor. Since, making an outpatient reservation
needs some sensitive information of patient’s, such
as the patient’s identity number, mobile phone,
home address, etc.. In order to prevent the sensitive
information from being exposed, A encrypts the
information using his own public key, and generates
a priority path and the corresponding re-encryption
keys of his path. Finally, these encrypted data are
sent to the proxies. We suppose A’s choice of the
doctors from high priority to low is D1 ! D2 !
. . .! Dn. If at A’s appointment time, D1 happens to
have no time or have other important appointment,
then A’s reservation is automatically transferred to
D2 by the proxy, and so on.

� Data sharing or trading in cloud: Fig. 2 shows how an
AP-PRE works in cloud. Suppose Alice has some
data to share or trade. She first encrypts the data
using her own public key, and transforms the
resulted ciphertext to the secure cloud server along
with a delegation path table which includes an
ordered delegatees and the corresponding re-
encryption keys. On receiving the ciphertext and
path table from Alice, the cloud proxy finds out the
first record from the path table, then transforms the
ciphertext to Bob using the re-encryption key rka!b.
If Bob gives up the decryption right, then the cloud
proxy finds out the second record from the path
table, and produces a new ciphertext on input the
ciphertext re-encrypted to Bob. This continues until
a delegatee is willing to accept the decryption right
for data sharing or trading.

1.2 Related Works

Since the concept of PRE was introduced by Blaze et al. [2]
at Eurocrypt’98, there have been many papers [2], [3], [4],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22] that have proposed PRE schemes with different
properties to meet multifarious application demands. In a
traditional proxy re-encryption, once the proxy gets the re-
encryption key from the delegator, it can transform all the
ciphertexts of the delegator to the delegatee, and the

Fig. 1. Multi-hop property of PRE scheme.
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delegatee can decrypt all ciphertexts for the delegator after
re-encryption by the proxy. This is not desired in many sce-
narios. In order to implement fine-grained access control
policies, two variants of PREs were proposed, type-based
proxy re-encryption [8] and conditional proxy re-encryp-
tion [5], [6], [7], which can provide fine-grained data access.
In the following paragraph, we spend some time on describ-
ing the characters of these PREs.

Type-Based Proxy Re-Encryption(TB-PRE). In a type-based
proxy re-encryption [8] scheme, the delegator categorizes
his messages (ciphertexts) into different subsets, for each of
these subsets, the delegator delegates the decryption rights
of this subset to a specific delegatee. The ciphertexts for the
delegator are generated based on the delegator’s public key,
and the message type is used to identify the message subset.
Type-based proxy re-encryption enables the delegator to
choose a particular proxy for a specific delegatee, which
might be based on the sensitiveness of the delegation.

Conditional Proxy Re-Encryption(C-PRE). In a conditional
proxy re-encryption [5], [6], [7], some condition is attached to
a message, so the ciphertext for the delegator is the encryp-
tion of the combination of the message and the condition.
With the re-encryption key generated by the delegator, the
proxy can only transform the delegator’s ciphertexts which
satisfy the condition set by the delegator. The condition can
be a single keyword, or a set of descriptive keywords [7].
Another generalization of C-PRE is conditional proxy broad-
cast re-encryption (CPBRE) [6]. In a CPBRE, the proxy can
re-encrypt the ciphertext for a set of users at a time.

Though the above two PREs have different names, they
are the same in spirit. Both of them provide fine-grained
data access compared with the traditional PREs, but, neither
of them can ensure that the delegation always be controlled
by the delegator. In this sense, they are similar to the tradi-
tional PREs, i.e., the delegator could only control the selec-
tion of the first delegatee whom he delegates the decryption
rights to. When the re-encrypted ciphertext is further trans-
formed, the delegator has no idea of those delegatees. It is
undesirable in most of the real applications, where the dele-
gator wants to ensure that the delegation has always been

transformed to those delegatees he trusts. For example, if
the first delegatee a delegator designated is impossible to
decrypt the ciphertext, the delegator can ensure that the del-
egation proceeds by the next delegatee he wishes. This
ensures that the delegator’s encrypted files can always be
decrypted by those he trusts.

Graded encryption (GE) [23] can be applied to some sce-
narios that a proxy re-signature can be done. In a GE
scheme, there is one central (mostly offline) authority and a
number of sub-authorities holding master keys that corre-
spond to different levels. GE works in the way, if a user suc-
ceeds in one stage, he gets an updated key for the next
stage. In spirit, GE is not for ciphertext transformation, so it
is different from PRE. Meanwhile, in GE, the multiple
authorities are with different levels, in contrast, all proxies
act in a same level in PRE. Also, as indicated in [23], GE can
be elegantly used to prove that a certain path was taken in a
graph that proxy re-signatures but not proxy re-encryptions
are applicable.

Another cryptographic primitive for delegating the
decryption power of some ciphertexts without sending the
secret key to the delegatee, is key-aggregate cryptosystem
(KAC) [24]. In KAC, users encrypt a message not only under
a public key, but also under an identifier of ciphertext class.
Using the master-secret key which is hold by the key owner,
the owner extracts secret keys for different classes. KAC is a
public key encryption scheme which supports flexible dele-
gation in the sense that any subset of the ciphertexts is
decryptable by a decryption key, which is generated by the
owner of the master-key. Though KAC has the same mean-
ing with PRE in delegating the decryption power, its delega-
tion can be performed only once. In this sense, it can only be
compared with a single-hop PRE.

An AP-PRE is different from a broadcast encryption. In a
broadcast encryption, the data owner chooses all the recipi-
ents and uses their public keys to produce the ciphertexts
for them in one algorithm. While, an encryption algorithm
in an AP-PRE scheme only encrypts message for one recipi-
ent once a time. In an AP-PRE, the delegatee can obtain the
ciphertext from the proxy directly without interaction with

Fig. 2. Application of AP-PRE in cloud.
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the data owners. In an AP-PRE, once a delegatee accepts the
decryption right, the delegation stops.

Moreover, an AP-PRE cannot be realized by simply run-
ning multiple single-hop PREs. According to our definition,
the delegation, for ciphertexts of a delegator i, can only be
carried out on the autonomous path Pai designated by the
delegator i, in the sense that (1) re-encrypted ciphertexts
along the autonomous path Pai cannot branch off Pai with
meaningful decryption, and (2) original ciphertexts gener-
ated under pkj for j 6¼ i (i.e., for a path Paj different from
Pai) cannot be inserted into (i.e., cannot be transformed
along) the autonomous path Pai with meaningful decryp-
tion. For examples, for a re-encrypted ciphertext ciij under
user ij on path Pai, if ij generates a re-encryption key from
him to another delegatee which is different from ijþ1 (user
ijþ1 is the next delegatee of user ij in path Pai), he cannot
produce a meaningful ciphertext cjjk by executing the re-
encryption algorithm on input ciij and his newly generated
re-encryption key, and if such ciphertext cjjk is inserted into
a path which is initiated by ij, no correct message could be
recovered. Suppose that the autonomous path designated
by delegator user i is denoted by Pai ¼ ðpki0 ¼ pki; pki1 ; . . . ;
pki‘i ), which is a sequence of ordered ‘i different public
keys, where pki is denoted as pki0 , for any j; 0 � j � ‘i;
ij 2 f1; . . . ; ng, and pkj 6¼ pkk for any 0 � j 6¼ k � ‘i. An AP-
PRE cannot be realized by simply running the following sin-
gle-hop PREs, from pki to pki1 ; . . ., from pki‘i�1 to pki‘i , since
no users different from pki can produce meaningful cipher-
text by executing AP-PRE algorithms (for pkj; j 6¼ i, pkj can-
not transform the re-encrypted ciphertext produced on path
Pai with a re-encryption key generated by him).

1.3 Paper Organization

The remainder of this paper is organized as follows. In
Section 2, we introduce the preliminary knowledge of
assumption which our AP-PRE scheme is based on. We
then describe the concept of our autonomous path proxy re-
encryption and its security model in Section 3. In Section 4,
the construction of our IND-APPRE-CPA secure autono-
mous path proxy re-encryption scheme is presented, fol-
lowed by security analysis in Section 5. Finally, we
conclude this paper in Section 6.

2 PRELIMINARIES

We use standard notations and conventions below for writ-
ing probabilistic algorithms, experiments and interactive
protocols. If D denotes a probability distribution, x D is
the operation of picking an element according to D. If S is a
finite set then jSj is its cardinality, and x S or x R S is
the operation of picking an element uniformly at random
from S. If a is neither an algorithm nor a set then x a is a
simple assignment statement. If A is a probabilistic algo-
rithm, then Aðx1; x2; . . . ; rÞ is the result of running A on
inputs x1; x2; . . . and coins r. We let y Aðx1; x2; . . .Þ, or
Aðx1; x2; . . .Þ ! y, denote the experiment of picking r at ran-
dom and letting y be Aðx1; x2; . . . ; rÞ. By Pr½R1; . . . ;Rn : E�
we denote the probability of event E, after the ordered exe-
cution of random processes R1; . . . ; Rn.

We say that a function fðkÞ is negligible, if for every
c > 0 there exists an kc such that fðkÞ < 1=kc for all

k > kc. Two distribution ensembles fXð�; zÞgk2N;z2f0;1g�
and fY ð�; zÞgk2N;z2f0;1g� are computationally indistin-
guishable, if for any probabilistic polynomial-time (PPT)
algorithm D, and for sufficiently large k and any
z 2 f0; 1g�, it holds jPr½Dðk; z; XÞ ¼ 1� � Pr½Dðk; z; Y Þ ¼ 1�j
is negligible in k.

2.1 Bilinear Map and Computational Assumption

Definition 1 (Bilinear Map). Let G and G1 be two multiplica-
tive groups of the same prime order q, and g be a generator of G.
Assume that the discrete logarithm problems in both G and G1

are intractable. We say that e : G� G! G1 is a bilinear or
pairing map if it satisfies the following properties:

(1) Bilinear: For all a; b 2 Z�q ; g 2 G; eðga; gbÞ ¼ eðg; gÞab.
(2) Non-degenerate: eðg; gÞ 6¼ 1G1

, i.e., if g generates G,
then eðg; gÞ generates G1.

(3) Computable: The map e is efficiently computable.

We denote BSetupð1kÞ as an algorithm that, on input the
security parameter 1k, outputs the parameters for a bilinear
map as ðq; g;G;G1; eÞ, where jqj ¼ k.

Definition 2 (Decisional Bilinear Diffie-Hellman
(DBDH) Problem). LetG andG1 be twomultiplicative groups
of the same prime order q, and g be a generator ofG. Suppose that
e : G� G! G1 is a bilinear map. The decisional bilinear Diffie-
Hellman (DBDH) problem is to decide, given a tuple of values
ðg; ga; gb; gc; T Þ 2 G4 � G1 (where a; b; c 2R Z�q), whether T ¼
eðg; gÞabc holds.
Let k ¼ jqj be the security parameter. Formally, we say

that the DBDH assumption holds in G;G1, if for any PPT
algorithms A, the following quantity is negligible (in k)

Pr½a; b; c R Z�q : 1 Aðg; ga; gb; gc; eðg; gÞabcÞ��
Pr½a; b; c R Z�q : T  R G1; 1 Aðg; ga; gb; gc; T Þ�

�����

�����:

3 DEFINITION AND SECURITY MODEL FOR

AUTONOMOUS PATH PROXY RE-ENCRYPTION

3.1 Autonomous Path Proxy Re-Encryption
(AP-PRE)

An autonomous path proxy re-encryption is a new kind of
unidirectional and multi-hop proxy re-encryption, where
the delegator controls the selection of all his delegatees in a
delegation path. The delegator has a set of delegatees with
privilege order, and generates re-encryption keys for these
delegatees. The re-encryption keys are sent to the corre-
sponding proxies via a secure channel. The delegation, for
ciphertexts of a delegator i, can only be carried out on the
autonomous path Pai designated by the delegator i, in the
sense that (1) re-encrypted ciphertexts along the autono-
mous path Pai cannot branch off Pai with meaningful
decryption; and (2) original ciphertexts generated under pkj
for j 6¼ i (i.e., for a path Paj different from Pai) cannot be
inserted into (i.e., cannot be transformed along) the autono-
mous path Pai with meaningful decryption. (See Section
1.2.)

Definition 3 (Autonomous Path Proxy Re-encryption).
An autonomous path proxy re-encryption scheme consists of
the following algorithms:

836 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:12:58 UTC from IEEE Xplore.  Restrictions apply. 



� Setupð1kÞ ! par: On input the system’s security
parameter k, it outputs the system’s public parameters
par. The system parameters particularly include a
description of a finite message spaceM and a descrip-
tion of a ciphertext space C.

� KeyGenðpar; iÞ ! ðpki; skiÞ: On input the system’s
public parameters par and a user’s identity
i 2 f1; . . . ; ng, it outputs the public and private key
pair ðpki; skiÞ for user i; 1 � i � n, where n is the
number of users in the system.

� CreatPathðpar; pkiÞ ! ðPai; ‘iÞ: On input the sys-
tem’s public parameters par, a public key pki of a dele-
gator user i, it outputs an autonomous delegation path
Pai of length ‘i represented by ðPai; ‘iÞ. The autono-
mous path designated by delegator user i;Pai ¼
ðpki0 ¼ pki; pki1 ; . . . ; pki‘i ), is a sequence of ordered ‘i
different public keys, where pki is denoted to be pki0 ,
ij 2 f1; . . . ; ng for any j; 0 � j � ‘i, and pkj 6¼ pkk
for any 0 � j 6¼ k � ‘i. A sequence of ordered public-
keys Paij!k ¼ ðpkij ; . . . ; pkikÞ is called a sub-path of
Pai, if 0 � j � k � ‘i. In this work, for presentation
simplicity, we denote by pkij 2 Pai a user pkij in the
path Pai, and by ðpkij ; pkijþ1Þ 2 Pai a step from user
pkij to pkijþ1 in the path Pai, where 0 � j < ‘i.

� RKGenðpar; ski;PaiÞ ! rki ¼ ðrki0!1, rki1!2, . . .,
rki‘i�1!‘i

): On input the system’s public parameters
par, the private key ski of the delegator user i, and the
autonomous path Pai ¼ ðpki0 ¼ pki; pki1 ; . . . ; pki‘i Þ
created by i, the algorithm outputs ‘i re-encryption
keys and sends them to the corresponding proxies via a
secure channel, where for any j; 0 � j < ‘i; rk

i
j!jþ1 is

the re-encryption key from user ij to ijþ1 in the autono-
mous path Pai.

� Encðpar; pki;mÞ ! ci0, where pki is denoted as pki0 :
On input the system’s public parameters par, the dele-
gator’s public key pki, and a message m from the mes-
sage space M, it outputs the ciphertext ci0 under the
delegator’s public key pki ¼ pki0 .

� ReEncðpar;Pai; pkij ; pkijþ1 ; rkij!jþ1; c
i
jÞ ! cijþ1,

where 0 � j < ‘i: On input the system’s public
parameters par, a designated path Pai, a re-encryption
key rkij!jþ1 from user ij to ijþ1 and a ciphertext cij
under the public-key pkij of user ij, this algorithm first
checks whether ðpkij ; pkijþ1Þ 2 Pai and outputs “?” if
not. Otherwise, it outputs the re-encrypted ciphertext
cijþ1 under the public-key pkijþ1 of user ijþ1. For pre-
sentation simplicity, for any 0 � a < b � ‘i and
some ciphertext ĉ, where ĉ denotes an original cipher-
text when a ¼ 0 and a re-encrypted ciphertext other-
wise, we denote by
ReEncia!bðĉÞ ¼ ReEnc

�
par;Pai; rk

i
b�1!b;

ReEnc
�
par;Pai; rk

i
b�2!b�1; . . . ;

ReEncðpar;Pai; rkia!aþ1; ĉÞ . . .
��
.

� Decðpar; c; skiÞ ! ðm;?Þ: On input the system’s
public parameters par, a ciphertext c, and the corre-
sponding private key ski of user i, it outputs a message
m in the message spaceM, or an error symbol ? indi-
cating invalid ciphertext.

Correctness. We say that an autonomous path proxy re-
encryption scheme is correct if for any autonomous path Pai

created by a delegator i; 1 � i � n, and any j; 1 � j � ‘i, the
following equations hold for anym 2M

Dec
�
par;Encðpar; pki;mÞ; ski

� ¼ m;

Dec
�
par; cij; skij

� ¼ m; 1 � j � ‘i;

where for any k; 1 � k � j,

cik ¼ ReEnci0!kðEncðpar; pki;mÞÞ:

Let E be an AP-PRE scheme defined as above. We con-
sider the following game, denoted by ExpCPA

E;A , in which a
PPT adversary A against an IND-APPRE-CPA secure AP-
PRE is involved:

Besides the public key generation oracle, the private key
generation oracle, the re-encryption key oracle, and the re-
encryption oracle, which are allowed in the security model
for traditional PRE, a PPT adversary A against an
IND-APPRE-CPA secure AP-PRE can have access to an
additional oracle, the path generation oracle. Next, we
define the oracles which a PPT adversary against an AP-
PRE scheme can make queries to a challenger.1 In the fol-
lowing process, the challenger needs to maintain three
tables Tpk;RK, and P. They are initially empty, and used to
record the public keys, the re-encryption keys, and the
autonomous paths, respectively.

� Public key generation oracle OpkðiÞ: On input an index
i 2 f1; . . . ; ng by A, the challenger responds A by
running algorithm KeyGenðpar; iÞ to generate a key
pair ðpki; skiÞ for user i. The challenger returns pki to
the adversary A, and records ðpki; skiÞ in the table
Tpk.
We assume that A has made appropriate Opk queries
before he makes the following queries2.

� Private key generation oracle OskðpkiÞ: On input pki by
A, where pki is from Opk, i 2 f1; . . . ; ng, the chal-
lenger searches pki in the table Tpk and returns the
corresponding ski to A.

� Path creation oracle Ocpði;PaiÞ, where 1 � i � n: If A
has queried Ocpði;Pa0iÞ, the challenger returns “?”
indicating an invalid query. Otherwise (i.e., it is the
first time forA to queryOcp w.r.t. i), the challenger cre-
ates the path Pai ¼ ðpki ¼ pki0 ; pki1 ; . . . ; pki‘i Þ by run-
ning algorithm CreatPathðpar; pkiÞ, and generates the

re-encryption keys rki ¼ ðrki0!1; rk
i
1!2; . . . ; rk

i
‘i�1!‘i

Þ
for the path Pai by running algorithm RKGen

ðpar; ski;PaiÞ. The challenger records Pai in the path
table P, and rki in the re-encryption key table RK.
Finally, the challenger returns “Pai is created” toA.

� Re-encryption key generation oracle Orkði; pkij ; pkijþ1Þ:
The challenger first checks whether the path table P
contains a path Pai ¼ ð. . . ; pkij ; pkijþ1 ; . . .Þ for user i. If
not, the challenger outputs “?” indicating an invalid
query. Otherwise, the challenger retrieves rkij!jþ1
from rki in the tableRK, and returns rkij!jþ1 toA.

1. For PRE in the random oracle model, the adversary also gets
access to a random oracleH that is programmed by the challenger.

2. The assumption is to make sure that the adversary has grasped
the public key of a user before he makes further queries about that user.
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� Re-encryption oracle Oreenði; pkij ; pkijþ1 ; cijÞ: The chal-

lenger first checks if the path tableP contains the path
Pai ¼ ð. . . ; pkij ; pkijþ1 ; . . .Þ for user i. If not, it returns
“?” to A indicating an invalid query. Otherwise, the

challenger retrieves rkij!jþ1 from rki in the table RK,
computes cijþ1 ¼ ReEncðpar;Pai; rkij!jþ1; c

i
jÞ, and

returns cijþ1 back toA.
Next, we define a game which is run between a PPT

adversary A and the challenger C. The adversary
A ¼ ðA1;A2Þ, who works in two stages “find” and “guess”,
is described in the following experiment

Experiment ExpCPAE;A ð1kÞ
1. par Setupð1kÞ;
2. ðpki;Pai; pkj;m0;m1; stÞ
 AOpkð�Þ;Oskð�Þ;Ocpð�Þ;Orkð�Þ;Oreenð�Þ

1 (find, par),
where jm0j ¼ jm1j, pki 6¼ pkj, pkj ¼ pkim for some
m; 1 � m � ‘i, and st is some state information;
3. d R f0; 1g;
4. ci�0 ¼ Encðpar; pki;mdÞ, cj�0 ¼ Encðpar; pkj;mdÞ;
5. d0  AOpkð�Þ;Oskð�Þ;Ocpð�Þ;Orkð�Þ;Oreenð�Þ

2

(guess, par, c� ¼ ðci�0 ;j�0 Þ; stÞ;
6. return d0.

During the above experiment, some restrictions are
imposed upon the adversary A, including:
1) A has not made any private key generation queries

either to pki or pkj.
2) Adversary A has to obey the path rule w.r.t.

ðPai; ci�0 Þ, as specified below.
3) For any path Paj ¼ ðpkj0 ¼ pkj; pkj1 ; . . . ; pkj‘j Þ cre-

ated by A for user j, adversary A has to obey the
path rule w.r.t. ðPaj; cj�0 Þ, as specified below.

The path rule w.r.t. ðPai; ci�0 Þ is defined as follows (the
path rule w.r.t. ðPaj; cj�0 Þ is defined similarly):

For any sub-path Pai0!k ¼ ðpki0 ¼ pki; pki1 ; . . . ; pkikÞ of
Pai, where 1 � k � ‘i, if for any v; 0 � v � k� 1, A queried
Orkði; pkiv ; pkivþ1Þ, or Oreenði; pkiv ; pkivþ1 ; civÞ such that Dec
ðpar; civþ1; skivþ1Þ 2 fm0;m1g, then the following restriction
must be met (actually, as the path rule is specified w.r.t. any
sub-path, it implies that the following conditions hold also
for any step in the sub-path Pai0!k):

� A should not make the Oskðpkivþ1Þ query throughout
the game.

With respect to the above experiment ExpCPAE;A ð1kÞ, we

define the advantage of an adversary A in ExpCPAE;A as

AdvIND-APPRE-CPAE;A ðkÞ

¼ jPr½ExpCPA
E;A ðkÞ ¼ 1jd ¼ 0�

�Pr½ExpCPA
E;A ðkÞ ¼ 1jd ¼ 1�j;

or equivalently [25],

AdvIND-APPRE-CPAE;A ðkÞ ¼ j2Pr½d0 ¼ d� � 1j:
Definition 4. An autonomous path proxy re-encryption scheme
E is said to be ðt; qpk; qsk; qcp; qrk; qreen; �Þ-IND-APPRE-CPA
secure, if for any t-time adversary A who makes at most

qpk; qsk; qcp; qrk, and qreen queries to oracles Opk;Osk;Ocp;Ork,

and Oreen, respectively, we have Adv
IND-APPRE-CPA
E;A ðkÞ � �.

Remark 1. Note that with our IND-APPRE-CPA definition,
we only require the path rule w.r.t. ðPai; ci�0 Þ and
ðPaj; cj�0 Þ. In particular, the adversary A can get
cig ¼ ReEnc0!gðci�0 Þ, where A has not made an Osk query
on the user ig . Meanwhile, A can request to create a path
for user ig as a delegator, and then re-encrypts cig along
the path of ig . Then, our IND-APPRE-CPA security
implies that the re-encrypted ciphertext of cig is helpless
for A to distinguish the challenge message md w.r.t the
path rule ðPai; ci�0 Þ and ðPag ; cigÞ; That is, for some trivial
cases, ifA obtained the private key of user gk from private
key oracle, he cannot make re-encryption key or re-
encryption queries from user ig to gk on the path Pag (so
does a user on the path Pai). This captures that an original
ciphertext under pki cannot be re-encrypted branching off
the designated path Pai with meaningful decryption, and
also captures that any re-encrypted ciphertexts on path
Pai cannot be inserted into Pag with meaningful decryp-
tion. Similarly, an original ciphertext under pkj cannot be
re-encrypted along the designated path Pai for user i 6¼ j
with meaningful decryption.

Remark 2. The above IND-APPRE-CPA definition assumes
that each user can designate a single autonomous path,
which is the most often case in practice. But, the definition
can be simply extended to the general case of multiple
autonomous paths, where the path rule should hold w.r.t.
ci�0 (respectively, cj�0 ) and all autonomous paths of user i
(respectively, j).

4 CONSTRUCTION

Generally, an autonomous path proxy re-encryption scheme
consists of the following seven algorithms.

� Setupð1kÞ ! par: On input the security parameter 1k,
it outputs the system’s public parameters par. The
system’s public parameters include: Two multiplica-
tive groups G and G1 of the same prime order q, a
generator of G, i.e., g, a random element g1 2 G, and
a cryptographic hash function H : G1 ! G that is
modelled to be an RO. A bilinear or pairing map
e : G� G! G1. The message spaceM is G1. Finally,
the system’s public parameters par ¼ ðG;G1; g; g1;
q; e;HÞ is output.

� KeyGenðpar; iÞ ! ðpki; skiÞ: To generate a decryption
key, the useri selects ski ¼ xi from Z�q randomly, and
sets pki ¼ gxi .

� CreatPathðpar; pkiÞ ! ðPai; ‘iÞ: On input the sys-
tem’s public parameters par, a public key pki of a del-
egator user i, it outputs an autonomous delegation
path designated by user i of length ‘i. The autono-
mous delegation path is represented by ðPai; ‘iÞ,
where Pai ¼ ðpki0 ¼ pki; pki1 ; . . . ; pki‘i Þ is a sequence
of ordered ‘i different public keys in the system.

� RKGenðpar; ski;PaiÞ ! rki ¼ ðrki0!1, rki1!2, . . .,
rki‘i�1!‘i

), where Pai ¼ ðpki0 ¼ pki; pki1 ; . . . ; pki‘i Þ. To
generate these re-encryption keys, the delegator with
public key pki selects Xj  R G1; rj  R Z�q , for
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j ¼ 1; . . . ; ‘i. For j ¼ 1, the delegator computes

rki0!1 ¼ ðrkið0!1Þ1 ; rk
i
ð0!1Þ2 , rk

i
ð0!1Þ3Þ = ðgr1 , X1 � eðg1; pkr1i1 Þ,

HðX1Þ � g�ski1 Þ. For j ¼ 2; . . . ; ‘i, the delegator com-

putes rkij�1!j = (rkiðj�1!jÞ1 , rkiðj�1!jÞ2 ; rk
i
ðj�1!jÞ3 ) =

(grj , Xj � eðg1; pkrjij Þ,
HðXjÞ

HðXj�1ÞÞ. Finally, the re-encryption
key rki ¼ ðrk0!1; rk1!2; . . . ; rk‘i�1!‘iÞ is output, and

each rkj�1!j, 1 � j � ‘i is sent to the corresponding
proxies via a secure channel.

� Encðpar; pki;mÞ ! ci0: To encrypt a message m 2 M
under pki, where pki is a delegator that is denoted by
pki0 , the algorithm selects r R Z�q and computes

c1 ¼ gr; c2 ¼ m � eðg1; pki0Þr:
Finally, the ciphertext is output as ci0 ¼ ðc1; c2Þ.

� ReEncðpar;Pai; pkij ; pkijþ1 ; rkij!jþ1; c
i
jÞ ! cijþ1, where

0 � j < ‘i, and Pai ¼ ðpki0 ¼ pki; pki1 ; . . . ; pki‘i Þ: To
re-encrypt a ciphertext under the public key pkij to
the one under pkijþ1 in a delegation path Pai which
is designated by a delegator whose public key is pki
(denoted by pki0 in our solution), this algorithm first
checks whether ðpkij ; pkijþ1Þ 2 Pai, and outputs “?”
if not. Otherwise, if j = 0, pki’s proxy parses the

ciphertext cij as ðcij1 ; cij2Þ, and the re-encryption key

rkij!jþ1 as ðrkiðj!jþ1Þ1 ; rk
i
ðj!jþ1Þ2 ; rk

i
ðj!jþ1Þ3Þ. If j 	 1,

pki’s proxy parses the ciphertext cij as ðcij1 , cij2 , cij3 =

rkiðj�1!jÞ1 , c
i
j4
= rkiðj�1!jÞ2Þ, and the re-encryption key

rkij!jþ1 as ðrkiðj!jþ1Þ1 , rk
i
ðj!jþ1Þ2 , rk

i
ðj!jþ1Þ3Þ. The user

pki’s proxy computes

cijþ1 ¼ ðcijþ11 ; cijþ12 ; cijþ13 ; cijþ14Þ;

where cijþ11 ¼ cij1 , c
i
jþ12 ¼ cij2 � eðcij1 ; rkiðj!jþ1Þ3Þ, c

i
jþ13 ¼

rkiðj!jþ1Þ1 , c
i
jþ14 ¼ rkiðj!jþ1Þ2 .

� Decðpar; cij; skijÞ ! ðm;?Þ: On input of the system’s
public parameters par, a ciphertext cij, and the corre-
sponding private key skij of user ij, the algorithm
first checks whether cij is an original ciphertext or a
re-encrypted ciphertext. For an original ciphertext,
the user with public key pkij parses cij as ðcij1 ; cij2Þ,
computes and outputs m ¼ ci

j2

eðci
j1
;g
skij
1
Þ
. Otherwise, if

the ciphertext is a re-encrypted one, the correspond-
ing delegatee parses cij as ðcij1 ; cij2 ; rkiðj�1!jÞ1 ;

rkiðj�1!jÞ2Þ. The delegatee with public key

pkij ; 1 � j � ‘i, computes Xj =
rkiðj�1!jÞ2

eðg
skij
1

;rkiðj�1!jÞ1
Þ
. Finally,

the delegatee with public key pkij computes and out-

putsm ¼ ci
j2

eðci
j1
;HðXjÞÞ

.

Correctness

(1) For an original ciphertext ci0 ¼ ðci01 ; ci02Þ, the decryp-

tion m ¼ ci
02

eðci
01
;g
ski0
1
Þ
¼ m�eðg1;pki0 Þr

eðgr;gski0
1
Þ
¼ m�eðgr

1
;g
ski0 Þ

eðgr
1
;g
ski0 Þ ¼ m. The

decryption is obviously correct.

(2) For j ¼ 1, the ciphertext is like (ci11 , ci12 , rkið0!1Þ1 ,
rkið0!1Þ2 ), where

ci11 ¼ gr;

ci12 ¼ m � eðg1; pki0Þr � eðci11 ; rkið0!1Þ3Þ
¼ m � eðgr; gski01 Þ � eðgr;HðX1Þ � g�ski01 Þ
¼ m � eðgr;HðX1ÞÞ;

rkið0!1Þ1 ¼ gr1 ;

rkið0!1Þ2 ¼ X1 � eðg1; pki1Þr1 :

The delegatee, whose public key is pki1 , computes

X1 ¼
rkið0!1Þ2

eðgski11 ; rkið0!1Þ1Þ

¼ X1 � eðg1; pki1Þr1
eðgski11 ; gr1Þ

¼ X1 � eðgr11 ; gski1 Þ
eðgr11 ; gski1 Þ

¼ X1:

Then, the delegatee computes

m ¼ ci12
eðci11 ;HðX1ÞÞ ¼

m � eðgr;HðX1ÞÞ
eðgr;HðX1ÞÞ :

(3) For j > 1, the ciphertext is like ðcij1 , cij2 , rkiðj�1!jÞ1 ,
rkiðj�1!jÞ2Þ, where

cij1 ¼ gr;

cij2 ¼ m � eðcij1 ;HðXj�1ÞÞ � eðcij1 ; rkiðj�1!jÞ3Þ

¼ m � eðgr;HðXj�1ÞÞ � eðgr; HðXjÞ
HðXj�1ÞÞ

¼ m � eðgr;HðXjÞÞ;
rkiðj�1!jÞ1 ¼ grj ;

rkiðj�1!jÞ2 ¼ Xj � eðg1; pkijÞrj :

The delegatee whose public key is pkij , computes

Xj ¼
rkiðj�1!jÞ2

eðgskij1 ; rkiðj�1!jÞ1Þ

¼ Xj � eðg1; pkijÞrj

eðgskij1 ; grjÞ

¼ Xj � eðgrj1 ; gskij Þ
eðgrj1 ; gskij Þ

¼ Xj:

Then, the delegatee with public key pki computes

m ¼ cij2
eðcij1 ;HðXjÞÞ ¼

m � eðgr;HðXjÞÞ
eðgr;HðXjÞÞ :

The above 1 to 3 show that our AP-PRE scheme is correct.
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5 SECURITY PROOF

Theorem 1. Our AP-PRE scheme in Section 4 is
IND-APPRE-CPA secure, under the DBDH assumption in the
random oracle model.

Proof. Let A be a PPT adversary that has non-negligible
advantage " in attacking our AP-PRE scheme in Section 4
in the sense of IND-APPRE-CPA. We construct another
PPT adversary B using A to break the DBDH assumption
also with non-negligible probability.

Adversary B accepts a properly-distributed tuple hG =
hgi, ga, gb, gc, T i 2 G4 � G1 as input. We say the tuple
ðga; gb; gc; eðg; gÞabcÞ is a DBDH instance. If T ¼ eðg; gÞabc, B
tries to output 1; Otherwise, B tries to output 0. The inter-
action between the two adversaries A and B is described
as following:

� SETUP. B generates the scheme’s system parame-
ters par ¼ ðG;G1; g; g1 ¼ gb; q; e;HÞ and gives par
to A, where q is the prime order of G and G1,
e : G� G! G1 is a pairing map, and H : G1 ! G

is a cryptographic hash function that is modelled
to be an RO.
B takes i�; j�  f1; 2; . . . ; ng independently and
uniformly at random. That is, B tries to randomly
guess the two users to be challenged by the adver-
sary.

During the game, B needs to maintain four
tables Tpk, RK, P and H. They are initially empty
and are used to record the public keys, re-encryp-
tion keys, autonomous paths, and the RO queries,
respectively.

� The find stage. In this stage, B responds A’s
queries as following:
- On an OpkðiÞ query: B first selects a random

xi  Z�q . If i ¼ i� or i ¼ j�, B sets pki ¼ ðgaÞxi ,
which means the private keys of the user is
axi that is unknown to B. Otherwise (i.e.,
i 62 fi�; j�g), B sets pki ¼ gxi , which means that
the private key of this user is xi. Finally, B
returns pki to A, and records ðpki; xiÞ for
i 62 fi�; j�g in the table Tpk.

- On an OskðpkiÞ query, if i 62 fi�; j�g, B returns
ski ¼ xi to A. Otherwise (i.e., i 2 fi�; j�g), B
aborts.

- On an Ocpði;PaiÞ query, B searches the table
RK to see if there is any entry for user i in the
table. If there is, B returns ? which indicates
that A has queried to create a path for user i
before. Otherwise, it means that it is the first
time for A to make an Ocp query w.r.t. user i.
If i 62 fi�; j�g, B acts just as the honest user
does.
For i 2 fi�; j�g, B computes the re-encryption
key rki for path Pai ¼ ðpki0 ¼ pki; pki1
; . . . ; pkili Þ designated by the delegator user i,
as follows:
- B selects r1, . . ., ri‘i  R Z�q , X1, . . ., Xi‘i R G1.
- To compute rki0!1, B randomly selects

Z1  G1, and sets rki0!1 ¼ ðrkið0!1Þ1 ;

rkið0!1Þ2 , rk
i
ð0!1Þ3Þ = ðg

r1 , X1 � eðg1; pkr1i1 Þ,
Z1Þ. Note that, in the real view of A,
rki0!1 ¼ ðrkið0!1Þ1 ; rk

i
ð0!1Þ2 , rkið0!1Þ3Þ =

ðgr1 ,X1 � eðg1; pkr1i1 Þ, HðX1Þ � g�ski1 Þ.
- To compute re-encryption keys rkij!jþ1

for 1 � j � ‘i � 1, B computes rkij!jþ1 =

ðrkiðj!jþ1Þ1 , rk
i
ðj!jþ1Þ2 , rk

i
ðj!jþ1Þ3Þ = ðg

rjþ1 ,

Xjþ1 � eðg1; pkijþ1Þrjþ1 ,
HðXjþ1Þ
HðXjÞ Þ.

Finally, B records rki in the tableRK,
and returns “Pai is created” to A.
Throughout the simulation, in case A
makes the RO-query HðXkÞ, 1 � k � li,
w.r.t. rki for i 2 fi�; j�g, B aborts. Note
that, conditioned on A does not make
the RO-queries HðXkÞ’s, the simulation
of rki for i 2 fi�; j�g by B is perfect in
the random oracle model.

- On an Orkði; pkij ; pkijþ1Þ query, B first checks if
the path table P contains a path Pai ¼
ð. . . ; pkij ; pkijþ1 ; . . .Þ for user i. If not, B outputs
“?” indicating an invalid query. If yes, B
retrieves rkij!jþ1 from rki in the table RK, and
returns rkij!jþ1 to A.

- On an Oreenði; pkij ; pkijþ1 ; cijÞ query, B first

checks if the path table P contains a path
Pai ¼ ð. . ., pkij , pkijþ1 , . . .Þ for user i. If not, B
outputs “?” indicating an invalid query.
Otherwise, B retrieves rkij!jþ1 from rki in the
table RK. Then, B runs ReEncðpar;
Pai; rk

i
j!jþ1; c

i
jÞ, and returns the output to A.

� The choice� and� challenge stage. At the end of
the find stage, A submits two messagesm0 andm1

of equal length in the message space G1, a delega-
tor user with public key pki and its designated
autonomous path Pai, and a user with public key
pkj.

First, if i 62 fi�; j�g or j 62 fi�; j�g, i.e., the guess
of ði�; j�Þ by B is incorrect, B aborts. Otherwise, to
compute the challenge ciphertext, B randomly
selects d f0; 1g. Finally, B selects r�i ; r

�
j ran-

domly from Z�q , and computes the challenge
ciphertext under pki in path Pai as ci

�
0 , and a

ciphertext under pkj as c
j�
0

ci
�
0 ¼ ððgcÞr

�
i ; md � Txir

�
i Þ:

cj
�
0 ¼ ððgcÞr

�
j ; md � Txjr

�
j Þ:

At the end, c� ¼ ðci�0 ; cj
�
0 Þ is sent to A as the chal-

lenge ciphertexts.
Here, the restrictions imposed upon A are

listed as following:
- A has not made any private key generation

queries either to pki or pkj;
- A has to obey the path rule w.r.t. ðPai; ci�0 Þ,

where the path rule is defined in Section 2;
- For any path Paj ¼ ðpkj0 ¼ pkj; pkj1 ; . . . ;

pkj‘i Þ created by B for user j, A has to obey
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the path rule w.r.t. ðPaj; cj
�
0 Þ as defined in

Section 2.3

� The guess stage. A continues to make queries as
in the find stage, with the same restrictions as in
the choice� and� challenge stage.
At the end of this stage, A outputs his guess d0,
where d0 2 f0; 1g. If d ¼ d0, B outputs 1, in which
case it indicates that T ¼ eðg; gÞabc, and
ðga; gb; gc; T Þ is a DBDH tuple; Otherwise, B out-
puts 0 indicating that T is a random element in G1.

It is obvious that if the input to B is a DBDH tuple, then
the challenge ciphertexts ci

�
0 and cj

�
0 are correct original

encryptions of md under pki and pkj. The ciphertext c
i�
0 is

an original ciphertext under pki in its autonomous dele-
gation path Pai, and cj

�
0 is an original ciphertext under

pkj in some autonomous path designated by user j with
public key pkj. Otherwise, ci

�
0 and cj

�
0 are the encryptions

of a random element.
Next, we analyze the probability that B aborts in its

simulation.
First, B may abort, in case that A makes an RO-query

HðXkÞ, where 1 � k � li and Xk was used by B in gener-
ating rki for i 2 fi�; j�g. Note that, in case B does not
abort in this case, its simulation of rki for i 2 fi�; j�g is
perfect in the RO model. We further consider two cases.

� The first case is that A has queried OskðpkikÞ, i.e.,
A has gotten the private key of user pkik . In this
case, according to the path rule, A is not allowed
to get or use the re-encryption key rkik�1!k, and
hence the view of A in this case is independent of
Xk. This means that A can make the RO-query
HðXkÞ in this case is negligible in the random ora-
cle model.

� The second case is that A did not make the query
OskðpkikÞ, but got the re-encryption key rkik�1!k ¼
ðgrk , Xk � eðg1; pkrkik Þ; �Þ. In this case, the probability

that A makes the RO-query HðXkÞ must also be
negligible, as the ability of outputting Xk implies
the ability of break the DBDH assumption. Specif-
ically, if A can make the RO-query HðXkÞ with
non-negligible probability in this case, we can
construct another PPT algorithm C to break the
DBDH assumption also with non-negligible prob-
ability. In more detail, the input to C is
ðgrk ; g1 ¼ gb; pkik ¼ gskik ; ZkÞ, where Zk ¼ eðg; gÞrk�b�skik
or Zk  R G1. C sets rkik�1!k ¼ ðgrk , Xk � Zk; �Þ, and
then uses the ability of A in outputting Xk to vio-
late the DBDH assumption. Further details are
omitted here.

Second, B may abort due to incorrect guess of ði�; j�Þ.
Conditioned on A did not make the RO-query HðXkÞ
(i.e., the simulation of rki for i 2 fi�; j�g by B is perfect),
this event occurs with probability 1� 1

n2
.

It is obvious that in case B does not abort, which
occurs with probability negligibly close to 1

n2
, the view of

A in the simulation is identical to its view in the real

attack. This shows that B’s advantage in solving the
DBDH problem is negligibly close to "

n2
, where " is the

non-negligible probability with which A can break our
AP-PRE scheme. tu

6 CONCLUSION

In this paper, we introduce a new cryptographic primi-
tive, called autonomous path proxy re-encryption, which
is motivated by the demands in several potential applica-
tions. Not only do we first put forward the concept of del-
egator autonomous path proxy re-encryption, but also we
give a concrete construction of an IND-CPA secure
scheme under this concept. We note that such scheme
combines the advantage of a single-hop PRE and a multi-
hop PRE, in other words, AP-PRE provides much better
fine-grained access control to the delegation path than the
traditional multi-hop PRE. In the new proposed AP-PRE
scheme, the delegator has the ability to fully control the
selection of the delegatees as in a single-hop PRE, as well
as the convenience and flexibility of a multi-hop PRE. In
fact, an AP-PRE must be a multi-hop proxy re-encryption.
Moreover, in our scheme, any delegatee can designate a
new delegation path, while any re-encrypted ciphertext
from other path cannot be branched into his new path. As
discussed, AP-PRE schemes are desirable in many inter-
esting applications.

Our major contributions are summarized as follows:

� We introduce a new cryptographic primitive, called
autonomous path proxy re-encryption. This new
primitive has many potential applications.

� We give the formal definition of autonomous path
proxy re-encryption, and the formal security model
of this cryptographic primitive.

� We construct a concrete scheme, with provable IND-
CPA security under the DBDH assumption in the
random oracle model. Achieving IND-CCA secure
AP-PRE schemes is left as an interesting question for
future exploration.
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