
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022 317

Privacy-Preserving Aggregation-Authentication
Scheme for Safety Warning System

in Fog-Cloud Based VANET
Yafang Yang , Lei Zhang , Member, IEEE, Yunlei Zhao ,

Kim-Kwang Raymond Choo , Senior Member, IEEE, and Yan Zhang

Abstract— As cities become smarter, the importance of vehicu-
lar ad hoc networks (VANETs) will be increasingly pronounced.
To support latency- and time-sensitive applications, there have
been attempts to utilize fog-cloud computing in VANETs. There
are, however, a number of limitations in existing fog-cloud
based VANET deployments, ranging from computation and com-
munication bottlenecks to privacy leakage to costly certificate/
pseudonym management to key escrow, and so on. Therefore,
in this paper we propose a privacy-preserving aggregation
authentication scheme (PPAAS). The scheme is designed for
deployment in a safety warning system for fog-cloud based
VANETs. Specifically, the PPAAS scheme is realized using a
novel efficient anonymous certificateless aggregation signcryption
scheme (CASS) proposed in this paper, and allows a fog node to
aggregate signcrypted traffic-related messages from surrounding
vehicles into an aggregated ciphertext and unsigncrypt them in a
batch. We then evaluate the security of PPAAS and demonstrate
that it supports confidentiality, authentication, and (efficient)

Manuscript received June 19, 2021; revised October 28, 2021 and
December 9, 2021; accepted December 23, 2021. Date of publication Jan-
uary 6, 2022; date of current version January 21, 2022. This work was
supported in part by the National Natural Science Foundation of China
under Grant U1536205, Grant 61472084, Grant 61972094, Grant 62032005,
Grant 61972159, and Grant 61572198; in part by the Open Research Fund of
Engineering Research Center of Software/Hardware Co-design Technology
and Application, Ministry of Education (East China Normal University);
in part by the Fundamental Research Funds for the Central Universities;
in part by the National Key Research and Development Program of China
under Grant 2017YFB0802000; in part by the Shanghai Innovation Action
Project under Grant 16DZ1100200; in part by the Shanghai Science and
Technology Development Funds under Grant 16JC1400801; in part by the
Technical Standard Project of Shanghai Scientific and Technological Commit-
tee under Grant 21DZ2200500; and in part by the Shandong Provincial Key
Research and Development Program of China under Grant 2017CXG0701
and Grant 2018CXGC0701. The work of Kim-Kwang Raymond Choo
was supported only by the Cloud Technology Endowed Professorship. The
associate editor coordinating the review of this manuscript and approving
it for publication was Mr. Frederik Armknecht. (Corresponding authors:
Lei Zhang; Yunlei Zhao.)

Yafang Yang is with the College of Computer Science and
Technology, Fudan University, Shanghai 200433, China (e-mail:
18110240046@fudan.edu.cn).

Lei Zhang and Yan Zhang are with the Engineering Research Center
of Software/Hardware Co-design Technology and Application, Ministry of
Education, East China Normal University, Shanghai 200062, China, and
also with the Shanghai Key Laboratory of Trustworthy Computing, Software
Engineering Institute, East China Normal University, Shanghai 200062, China
(e-mail: leizhang@sei.ecnu.edu.cn; 1985921943@qq.com).

Yunlei Zhao is with the College of Computer Science and Technology,
Fudan University, Shanghai 200433, China, and also with the State Key
Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071,
China (e-mail: ylzhao@fudan.edu.cn).

Kim-Kwang Raymond Choo is with the Department of Information Systems
and Cyber Security, The University of Texas at San Antonio, San Antonio,
TX 78249, USA (e-mail: raymond.choo@fulbrightmail.org).

Digital Object Identifier 10.1109/TIFS.2022.3140657

conditional privacy, and key escrow freeness. In particular,
our scheme is the first in the literature to achieve efficient
conditional privacy, which avoids the need for costly pseudonym
management. We also demonstrate that the scheme is practical,
based on our simulation results.

Index Terms— Sender anonymity, key escrow freeness, vehicle
ad hoc networks, fog computing, safety warning system.

I. INTRODUCTION

VEHICULAR ad hoc networks (VANETs) are not new,
but they remain a topic of ongoing interest to both the

research community and the broader society (e.g., federal,
state, and county governments). This is not surprising due
to their potential application in a broad range of applications
ranging from smart intelligent / traffic system to smart city,
and so on. Generally, a VANET consists of participating
vehicles (e.g., unmanned ground and aerial vehicles) and road-
side units (RSUs; generally deployed on roads, buildings and
other infrastructure installations). Each vehicle is typically
equipped with a tamper-proof on-board unit (OBU), which
allows the vehicle to collect data in real-time, for example
from various onboard sensors. OBUs can also facilitate (wire-
less) communication between vehicles, RSUs, and/or other
Internet connected things in the vicinity or network. For
example, VANETs using dedicated short-range communication
(DSRC) [1]–[3] can support vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communications (e.g., sending
and receiving of traffic-related messages between vehicles in
V2V communications, or sending and receiving of traffic-
related messages in V2I communications).

In a typical VANET setup, a large number of traffic-related
messages (e.g., speed, location, and event of interest) will
be generated by the vehicles. For instance, in DSRC com-
munications, each vehicle generates and broadcasts a status
message every 100-300 ms. Safety warning system is an
important safety-related application in VANETs, where traffic-
related messages will need to be collected and analyzed, for
example in a cloud server [4]–[6]. To mitigate limitations
due to bandwidth and timeliness associated with data transfer
in cloud-based safety warning system, one can move the
computations closer to the data source; hence, the need for fog
computing [7]. This is also the focus of this paper (i.e., safety
warning system in fog-cloud based VANETs).

A safety warning system in fog-cloud based VANETs
typically adopts a three-layer architecture [8], [9], namely:
the mobile layer, the fog layer, and the cloud layer.

1556-6021 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1432-3885
https://orcid.org/0000-0001-8786-4562
https://orcid.org/0000-0002-2623-9170
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0002-2334-4450

318 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

The mobile layer is composed of stationary and moving
vehicles (potentially up to 80 miles per hour or more). The fog
layer comprises fog nodes (e.g., RSUs), and the cloud layer is
generally formed by one or more cloud servers. In other words,
vehicles in the mobile layer will send traffic-related messages
to the fog nodes in the fog layer. The fog nodes will process
these messages and generate the relevant response messages.
Since fog nodes generally have limited storage space, traffic-
related messages are forwarded to the cloud layer for storage
and/or further processing.

There are a number of security and privacy implications in
the design and implementation of any VANET systems, includ-
ing the VANET-enabled safety warning systems. First, traffic-
related messages are transmitted to the fog nodes through
open networks and thus, such communications can be subject
to attacks with real-world consequences (e.g., modification
and/or sending of fabricated messages can result in accidents
and/or fatalities). This reinforces the importance of message
authentication [13]. Second, message confidentiality is also
crucial since the transmitted data may contain sensitive infor-
mation. In addition, the recipient fog nodes should learn only
the content of the messages on a need-to-know basis. Further
complicating the system design, the cloud server may also not
be fully trusted [14]. Therefore, data stored in the cloud server
should be encrypted. Third, a vehicle owner usually does not
want his/her personal information (e.g., actual identity and
routes) to be revealed. Thus, vehicle (owner) privacy should
also be guaranteed. However, we should not rule out that
vehicles may fabricate messages and when this occurs, there
should be a mechanism to identify and penalize the offending
vehicle (owner). Therefore, privacy of the vehicle (owner)
should be conditional [15].

Signcryption is a viable solution, since it allows one to
achieve both message authentication and message confiden-
tiality simultaneously. Further, the pseudonym mechanism can
be utilized to protect the privacy of a vehicle. However, such
an approach requires that the vehicle changes its pseudonyms
(e.g., anonymous certificates) frequently, which incurs signif-
icant pseudonym management costs [16]. One can consider
utilizing anonymous signcryption to protect the privacy of a
message generator, and thus minimizes the use of pseudonyms.
However, efficiency is a real issue that cannot be ignored when
designing a (anonymous) signcryption scheme in applications
such as safety warning systems in fog-cloud based VANETs,
since an RSU may receive a great number of traffic-related
messages in a short period of time (e.g., during congested
traffic situation) [17]. To verify messages one at a time will
be too time-consuming, and can lead to traffic accidents.
Furthermore, if a RSU transmits all messages to the cloud
server without compression, significant communication and
storage overheads are incurred. Hence, we posit the potential
of signcryption, since it supports aggregation. This allows one
to reduce verification/computation and communication costs,
without affecting the security guarantee [18].

Most of the existing signcryption schemes are designed in
the conventional public key infrastructure (PKI)-based cryp-
tosystem, and thus incur significant certificate management
overheads. Identity-based public key cryptosystem, on the

other hand, avoids the need for certificate management but
it has the key escrow problem. Hence, we suggest using
signcryption schemes designed for the certificateless public
key cryptosystem (CPKC), which mitigates the challenges due
to certificate management and key escrow. This motivates the
design of our proposed anonymous certificateless aggregate
signcryption scheme (CASS) in this paper, where CASS is
designed to support both sender anonymity and aggregation
(two key requirements in safety warning systems). Specifically,
CASS consists of a key generation center (KGC), which issues
partial private keys for participating entities (e.g., RSUs and
vehicles) in the system. This allows the entity to generate the
associated public/private key pair based on its partial private
key and a self-chosen secret value. With the full private key,
the entity can signcrypt messages or unsigncrypt ciphertexts
(i.e., signcrypted messages).

To address the above mentioned challenges, a new anony-
mous CASS is proposed. Building on the proposed anonymous
CASS, we also present a privacy-preserving aggregation-
authentication scheme (PPAAS). Specifically, we consider the
contributions of this paper to be as follows:

1) We propose a novel anonymous CASS, designed to
simultaneously support data confidentiality, unforgeabil-
ity, and sender anonymity. To the best of our knowledge,
this is the first provably secure CASS that achieves
sender anonymity. In addition, our anonymous CASS
supports ciphertext aggregation and batch verification,
which makes it more suitable for bandwidth-limited
and time-critical applications. Anonymity is one of the
basic security requirements of VANETs and a number
of CASS has been proposed for VANETs. However, the
existing CASSs have not studied the security require-
ment of sender anonymity.

2) We then use the proposed anonymous CASS, a secure
signature scheme, and the pseudonym mechanism as
building blocks to design our PPAAS. Subsequently,
we evaluate the security of PPAAS to demonstrate that
it achieves data confidentiality, authentication, (efficient)
conditional privacy and key escrow freeness. We remark
that data confidentiality, authentication and key escrow
in our scheme are guaranteed by the data confidentiality
and unforgeablity of the underlying anonymous CASS
(as well as the characteristic of the underpinning CPKC).
For (efficient) conditional privacy (see Section III-B),
this is realized based on the anonymity property of our
CASS and the pseudonym mechanism. We emphasize
that this is the first scheme to achieve efficient con-
ditional privacy, and our scheme significantly reduces
the costs associated with pseudonym management and
storage for vehicles.

The rest of this paper is organized as follows. The next
two sections will present related literature and background
materials. The proposed CASS and PPAAS are described in
Sections IV and V, respectively. Sections VI presents the
simulation results of PPAAS and the efficiency and security
comparison among our scheme with related schemes. The
comparative summary shows our PPAAS incurs low aggre-
gation and unsigncryption delay, and low loss rate. In other

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: PPAAS FOR SAFETY WARNING SYSTEM IN FOG-CLOUD BASED VANET 319

words, the RSU in our scheme can efficiently process received
messages; thus, PPAAS can be deployed in real-world appli-
cations. The security proof of PPAAS is given in Section VII.
Finally, we conclude this work in Section VIII.

II. RELATED WORK

Integrating fog and cloud computing with VANETs is a
relatively recent development trend, since such an integrated
system will minimize latency and increase bandwidth uti-
lization in time-critical applications [19]. To date, significant
research efforts have focused on applications, architecture,
practicability of fog-cloud based VANETs [20]–[22]. Gener-
ally, existing approaches use a three-layer architecture that is
similar to the architecture considered in this paper, with the
exception of fog layer composition. For example, a fog layer
is composed only of RSUs in [21], and both stationary and
moving vehicles are treated as fog nodes in [20], [22]. While in
this paper, we describe the fog layer to comprise only RSUs
(for simplicity), other devices can also act as fog nodes in
practice.

V2V and V2I communications underpin safety warning
systems, and there have been a large number of safety warning
systems designed based on V2V communications [23]–[25].
However, security and privacy issues are relatively understud-
ied [24], [25]. Further, these schemes are achieved in either
PKI-based cryptosystem or IBPKC, or cannot guarantee data
confidentiality. We note that, since the communication range
of an RSU is much larger than that of a vehicle [26] and
multiple RSUs are connected through a wired link, these
RSUs may cooperatively analyze the received messages and
distribute the resulting safety warning messages to the vehicles
in a wide area. This will significantly improve the profundity
and precision of the safety warning messages. Only a few
researches aim to design safety warning system based on V2I
communications [8], [27]. Further, concrete solution is only
given in [8] to address the security and privacy issues for
safety warning system in fog-cloud based VANET. Although
the scheme is achieved in CPKC, it involves a large number
of costly cryptographic operations and cannot guarantee user
privacy.

The European Telecommunications Standards Institute
(ETSI) released a series of standards, ETSI TS 101 539-1,
ETSI TS 101 539-2, and ETSI TS 101 539-3, and defined
a number of applications based on V2X communications
[28]–[30]. One example is the system defined in ETSI TS
101 539-3 for collision risk warning from road side ITS-S
(or RSU in the context of this paper), which is conceptually
similar to the safety warning system presented in this paper,
in which the road side ITS-S broadcasts warning messages
generated from the messages collected from nearby vehicles.
Traditional PKI based cryptosystem was suggested as a mech-
anism to guarantee the security of the system. Further, the
standards released by ETSI only discuss traditional privacy
requirement while efficient conditional privacy is not studied.
As previously discussed, such an approach results in expensive
certificate/pseudonym management. We note that this system
adopts a typical fog-based VANET framework. However,
fog nodes usually have limited storage space. Therefore,

Fig. 1. System Architecture.

traffic-related messages should be forwarded to the cloud
server for storage and further processing, for example to
inform long-term city planning. These are the limitations we
seek to address in our proposal.

Aggregate signcryption is a useful tool that can be used
to realize secure communications for safety warning systems
in fog-cloud VANETs. Selvi et al. [31] proposed the first
aggregate signcryption scheme in IBPKC. To eliminate the
key escrow problem, the concept of CASS is introduced
in [32] together with a concrete construction. Later, some
efficient constructions are proposed [8], [33], [34]. However,
the number of costly bilinear map operations involved in [8],
[33] and [34] increases linearly as the number of vehicles
grows. Recently, Wang et al. [9] proposed a CASS for the
VANETs, which can achieve constant number of bilinear
map operations. Nevertheless, this scheme results in huge
communication overhead. We note that there are also several
CASSs [35], [36] whose security is proven based on the
Forking Lemma [37]. However, it was shown that the Forking
Lemma is not applicable to the proof of such a scheme [37].
A concrete instance in [37] shows that an attacker can violate
the unforgeability of such a scheme. To our knowledge, the
above-mentioned CASSs haven’t considered the property of
sender anonymity. Therefore, it is necessary to design an
efficient anonymous CASS for safety warning system in fog-
cloud based VANET.

III. BACKGROUND

A. System Model

Fig. 1 shows our system architecture, in which there exist
four types of entities, namely, TA, vehicles, RSUs (i.e., fog
nodes), and CS.

• TA: The TA is trusted and serves as the KGC. It generates
the system parameters and its master secret key, issues
partial private key for the entities (i.e., RSUs and vehi-
cles) in the system, and is used to trace the real identity
of a vehicle if the vehicle is malicious.

• Vehicles: Each vehicle is equipped with a tamper-proof
on-board unit (OBU), with which a vehicle can collect
its real-time traffic messages and broadcast signcrypted
safety-related messages.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

320 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

• RSUs: RSUs are widely distributed in different areas and
act as fog nodes [38], [39]. They are connected to each
other via wired link. An RSU will collect signcrypted
messages broadcasted by the nearby vehicles. These
messages are aggregated and used to generate a safety
warning message. Finally, the aggregated signcrypted
messages will be forwarded to the CS. We note that the
RSU can also share the messages with its nearby RSUs,
so that they can cooperatively generate a safety warning
message.

• CS: The CS serves as a data center of the system. All
the aggregated signcrypted messages will be stored by
the CS and utilized later.

B. Threats and Security Requirements

Security threats in safety warning systems come from
both external and internal attackers. Generally, internal threats
mainly come from RSUs, vehicles and the CS. The CS and
RSUs are usually assumed to be semi-trusted [10]. That means
they will honestly perform the PPAAS, but may be interested
in drivers’ privacy information. Vehicles may be malicious.
They may be curious about the content of the messages broad-
casted by the surrounding vehicles and/or the identities of the
surrounding vehicles, and may also broadcast fake messages
that may even cause serious accidents. The threats from an
external attacker are similar to those from malicious vehicles.
The attacker may be curious about the content of the messages
broadcasted by the surrounding vehicles and/or the identities
of the surrounding vehicles, and may also impersonate some
legal vehicles to send fake messages [40]–[42].

A secure scheme for safety warning system in fog-cloud
based VANET has to deal with the above threats. Correspond-
ingly, our scheme is designed to achieve the following security
requirements:

• Data Confidentiality: The message sent by a vehicle may
contain sensitive information. However, an attacker may
be curious about the content of the message. Confiden-
tiality guarantees that only the legitimate receivers can
learn the content of the message.

• Authentication: It guarantees that a received message is
indeed generated by the claimed vehicle and unmodified
during transmission.

• Efficient conditional privacy: It requires that no mali-
cious vehicle or external attacker can extract the sender’s
real identity or distinguish whether two messages are
from the same sender. If this requirement is missing,
a malicious vehicle or external attacker can extract a
sender’s location history. Since there may be malicious
vehicles, privacy should be conditional. Specifically, the
TA should be able to trace the real identity of a vehicle
when it is necessary (e.g., a fake message sent by a
malicious vehicle is found). We note that, RSUs in
VANETs are usually assumed to be semi-trusted [10].
However, since an RSU is located on the roadside,
it has the risk of being corrupted by an attacker. In this
case, obviously, the attacker can violate confidentiality.
But the privacy of a vehicle should still be protected.

This can be achieved by using short-term pseudonyms
which results in the pseudonym management problem,
since a vehicle has to change its pseudonym frequently.
Efficient conditional privacy guarantees that a vehicle
only needs to change pseudonym in a long period of time.

• Key escrow freeness: Except for the entity (i.e., a vehicle
or an RSU) itself, no one else (even the TA) can learn
the full private key of the entity.

Since a safety warning system in VANET has to meet
the real-time demand, the designed scheme should have low
computation and communication overheads in addition to the
above security requirements.

C. Anonymous CASS

CPKC aims to eliminate the certificate management prob-
lem without suffering from the key escrow problem. In CPKC,
a semi-trusted KGC is employed to issue partial private key for
the entities (e.g., vehicles, RSUs in this paper) in the system.
The full private key of an entity is generated based on its
partial private key and a secret value chosen by itself. Since
the KGC does not have the secret value, it cannot learn the
full private key as well. By this way, the key escrow problem
is eliminated. The full public key of an entity in the system
is its identity combined with a public key generated using
its secret value. However, no certificate is required to bind the
identity with the public key, so that the certificate management
problem is eliminated.

Signcryption is a cryptographic tool that enables both
authentication and confidentiality, where authentication guar-
antees that a message is indeed sent by the claimed sender
without modification and confidentiality guarantees that no one
other than the receiver of a message can learn the content
of the message. An anonymous signcryption scheme is a
signcryption scheme that holds sender anonymity, which guar-
antees that only a designated receiver of a message can learn
the identity of its sender. Anonymous aggregate signcryp-
tion, i.e., anonymous signcryption that supports aggregation
operation, can aggregate n ciphertexts from n senders into
a single ciphertext whose length is much shorter than that
of the n ciphertexts. Anonymous CASS is an anonymous
aggregate signcryption scheme designed in CPKC, which can
guarantee authentication, confidentiality and sender anonymity
simultaneously along with the advantage of CPKC.

D. Bilinear Maps and Intractable Problem

Our proposed scheme is from bilinear map which is defined
as follows. Let G1, G2 be two additive groups of order q
(a large prime), GT be a multiplicative groups with the same
order, P be a generator of G1, and Q be a generator of G2.
A map ê : G1 × G2 → GT is said to be a bilinear map if it
satisfies [43] 1) Bilinearity: For all a, b ∈R Z∗

q , ê(a P, bQ) =
ê(P, Q)ab . 2) Non-degeneracy: For any u ∈ G∗

1 and v ∈ G∗
2,

ê(u, v) �= 1GT , where 1GT denotes the identity of GT .
If G1 = G2, then the map ê : G1 × G1 → GT is a

Type 1 bilinear map; else if there is an efficiently computable
isomorphism ψ : G2 → G1 and ψ(Q) = P , then the map is

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: PPAAS FOR SAFETY WARNING SYSTEM IN FOG-CLOUD BASED VANET 321

TABLE I

NOTATIONS

a Type 2 bilinear map; else if no such isomorphism exists, the
map is called a Type 3 bilinear map [44].

The security of our scheme is based on the assumption that
the computational co-Computing-Deffie-Hellman (co-CDH)
problem in G1 is intractable.

Definition 1 (co-CDH assumption): Given a tuple (P, a P,
Q, bQ), the co-CDH problem is to calculate abP for unknown
a, b ∈ Z∗

q . The corresponding assumption is that the advantage
for any probabilistic polynomial time (PPT) adversary to solve
the co-CDH problem is negligible.

E. Notations

Some frequently used notations in our anonymous CASS
and PPAAS are shown in Table I.

IV. BUILDING BLOCK

We define the notion and the formal security model of
anonymous CASS, then propose a concrete construction that
is provably secure in the defined model.

A. Definition of CASS

An anonymous CASS consists of the following algorithms:
• Setup(κ): It is run by the KGC. On input a security

parameter κ , it generates the system parameters para
and the system master secret key msk. We leave para as
a default input of the rest algorithms.

• PPK(msk, I Di): It is run by the KGC. On input msk,
an entity’s identity I Di , it returns a partial private key
Di for the entity.

• UKG(Di): It is run by an entity with identity I Di .
On input Di , it returns the full private key skI Di and
the corresponding public key PI Di of the entity. We note
that skI Di and PI Di are generated based on a secret value
chosen by the entity itself.

• SignCrypt(mi ,�, I Di , PI Di , skI Di , I D j , PI D j): It is
run by an entity to signcrypt a message. On input a mes-
sage mi , an aggregate keyword �, sender’s identity I Di ,
public key PI Di and private key skI Di , and receiver’s

identity I D j and public key PI D j , it returns a ciphertext
Ci , i.e., a signcrypted message.

• AggUnSignCrypt({Ci }n
i=1,�, I D j , PI D j , skI D j): It is

an aggregation and unsigncryption algorithm run by a
receiver to aggregate the received ciphertexts into an
aggregated ciphertext and unsigncrypt the ciphertexts.
On input a set of ciphertexts {Ci }n

i=1 generated under
the same aggregate keyword �, I D j , PI D j and skI D j ,
it returns an aggregated ciphertext C , and a set of
messages {mi }n

i=1 if {Ci }n
i=1 can pass the verification test.

B. The Construction

We propose our CASS which has the following algorithms:
• Setup(κ): On input κ , the KGC generates the system

parameters and master secret key as follows:
1) Choose P, Q, q,G1,G2,GT , a Type 2 bilinear map

ê : G1 × G2 → GT as defined in Section III-D.
2) Choose λ∈RZ∗

q as the master secret key, set Ppub =
λQ as the system public key, choose six crypto-
graphic hash functions: H1 : {0, 1}∗ → G∗

1, H2 ∼
H4 : {0, 1}∗ → G∗

2, H5 : G3
2 → {0, 1}k ,

H6 : {0, 1}∗ → Z∗
q , where k = |m| + |I D|.

3) Return the public parameters para = �G1,G2, ψ,
GT , ê, P, Q, Ppub, H1 ∼ H6

〉
and keep λ secret.

• PPK(λ, I Di): On input msk and I Di , the KGC computes
Qi,0 = H1(IDi , 0), Qi,1 = H1(IDi , 1), and sets DIDi =
(DIDi ,0 = λQi,0, DI Di ,1 = λQi,1) as the partial private
key corresponding to I Di .

• UKG(Di): On input Di , an entity randomly selects
xI Di ∈R Z∗

q , sets PI Di = xI Di P as its public key and
sets skI Di = (xI Di , Di) as its full private key.

• SignCrypt(mi ,�, I Di , PI Di , skI Di , I D j , PI D j): In our
later PPAAS, we will design an authentication mechanism
to pre-verify the validity of a receiver’s public key (See
Section V-D). Here we assume the public key of a receiver
is already verified. In other words, the public key of the
receiver is not replaced. Given mi , �, I Di and I D j as
input, the sender signcrypt the message mi as follows:

1) Select ri ∈R Z
∗
q , set Ri = ri P , Ui = ri PI D j , set

Ki = H5(Ui , Ri , PI D j), ci = Ki ⊕ (mi	IDi 	PI Di).
1

2) Compute hi = H6(PI Di 	PI D j 	I D j 	Ri	�	mi),
T = H2(�), V = H3(�), W = H4(�).

3) Compute si = Di,0 + xI Diψ(V) + hi (Di,1+
xI Diψ(W)) + riψ(T).

4) Return Ci = (Ri , ci , si) as the ciphertext.
• AggUnSignCrypt({Ci }n

i=1,�, I D j , PI D j , skI D j): On
input C , �, I D j , PI D j and skI D j , the receiver does the
following:

1) Compute S = ∑n
i=1 si .

2) Compute T = H2(�),V = H3(�),W = H4(�);
for 1 ≤ i ≤ n, compute Ui = xI D j Ri , Ki =
H5(Ui , Ri , PI D j), mi	I Di 	PI Di = Ki ⊕ ci , hi =
H6(PIDi 	PI D j 	ID j 	Ri	�	mi), Qi,0 = H1(IDi , 0),
Qi,1 = H1(IDi , 1).

1We note that in existing anonymous CASS, the sender’s public key should
be transmitted in public. This will reveal some of the sender’s identity
information. To achieve sender anonymity, the sender’s public key should
also be encrypted.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

322 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

3) Verify ê(S, Q)
?= ê(

∑n
i=1 Qi,0 + ∑n

i=1 hi Qi,1,
Ppub) ê(

∑n
i=1 PI Di , V)ê(

∑n
i=1 hi PI Di ,W)ê(

∑n
i=1

Ri , T). If the above equation holds, output C =
({Ri}n

i=1, {ci }n
i=1, S) and {mi }n

i=1.

C. Security Model of CASS

Two types of adversaries are generally considered in CPKC.
A Type I adversary AI can replace any entity’s public key but
does not know the master secret key. A Type II adversary
AI I may access to the master secret key but is not allowed
to replace the public key of an entity. As an anonymous
aggregate signcryption scheme in CPKC, it has to satisfy
data confidentiality, unforgeability and sender anonymity even
under the attacks from AI and AI I .

Definition 2 (Data Confidentiality): A CASS holds data
confidentiality if there is no probabilistic polynomial-time
(PPT) adversary of Type I or Type II can win Game 1 with a
non-negligible advantage.

Game 1: It is played between a challenger C and an
adversary AI /AI I , and has the following four stages. In the
first stage, C initializes the system parameters and the master
secret key. The public parameters are passed to AI /AI I . If the
adversary is AI I , the master secret key is passed to AI I as
well. In the second stage, the AI /AI I can ask PPK, PK,
SK, Signcrypt, and AggUnSignCrypt queries, where PK and
SK are used to model UKG(Di) in an anonymous CASS.
For AI , he may also replace the public key of an entity by
querying RPK. In the third stage, AI /AI I outputs n+1 distinct
challenge identities {I D∗

i }n
i=1, I D∗

j , an aggregate keyword �∗
and two sets of messages M∗

0 = {m∗
0,i }n

i=1, M∗
1 = {m∗

1,i}n
i=1

(for i ∈ [1, n], |m∗
0,i | = |m∗

1,i |). C randomly chooses a bit μ,
and then returns a challenge aggregated ciphertexts C∗ on the
messages in M∗

μ to AI /AI I . In the final stage, AI /AI I can still
make the above queries, except the SK query on the I D∗

j and
the AggUnSignCrypt query on C∗. Finally, AI /AI I outputs
a bit μ�. If μ� = μ, AI /AI I wins the game.

Definition 3 (Unforgeability): A CASS is unforgeability if
there is no PPT adversary of Type I or Type II can win
Game 2 with a non-negligible probability.

Game 2: It is played between a challenger C and an
adversary AI /AI I and has the following three stages. The first
two stages are the same as those stages in Game 1. In the
final stage, AI /AI I outputs a forged aggregated ciphertext C∗
corresponding to {I D∗

i }n
i=1, I D∗

j , {P K ∗
i }n

i=1, P K ∗
j ,�

∗ and a
set of messages M∗ = {M∗

i }n
i=1. If C∗ can pass the verification

test, AI /AI I wins the game.
Definition 4 (Sender Anonymity): A CASS fulfills sender

anonymity if no PPT adversary of Type I or Type II can win
Game 3 with a non-negligible probability.

Game 3: It is played between a challenger C and an adver-
sary AI /AI I and is the same as Game 1 except the third stage.
In the third stage, AI /AI I outputs two sender identity sets of
n distinct identities ID

∗
0 = {I D0,i }n

i=1, ID
∗
1 = {I D1,i }n

i=1,
a receiver’s identity I D∗

j , an aggregate keyword �∗ and a
message set M

∗ = {m∗
i }n

i=1. C randomly chooses a bit μ, and
returns a challenge aggregated ciphertext C∗ generated by the
ID

∗
μ on message M∗ to AI /AI I .

Fig. 2. Overview of PPAAS.

V. THE PROPOSED PPAAS

We present our PPAAS for safety warning system in fog-
cloud based VANETs based on our anonymous CASS.

A. High-Level Description

As shown in Fig 2, our PPAAS consists of five stages,
namely: System Initialization, Registration, Message Delivery,
Fog-cloud Based Message Processing, and Trace.

In the first stage, the TA generates the master secret key
and public system parameters. In the second stage, all the
vehicles and the RSUs in the system are enrolled by the TA.
That is vehicles and the RSUs generate their full private-
public key pairs with the help of the TA. In the third stage,
each vehicle delivers signcrypted traffic-related messages to its
nearest RSU(s). In the fourth stage, an RSU aggregates and
unsigncrypt ciphertexts generated under the same aggregate
keyword (e.g., current timestamp). If these messages are
verified, the RSU executes a warning precision algorithm
(e.g., the algorithm proposed in [27]) and generates a safety
warning message if necessary. Then, the RSU broadcasts the
safety warning message to the vehicles in its region, it can
also transfer this safety warning message to its nearby RSU(s).
Finally, the RSU uploads the aggregated ciphertext to the CS
for later use. In the stage of trace, the TA can recover the real
identity of a malicious vehicle.

We will now describe these stages in detail.

B. System Initialization

In this stage, the TA generates the public system parameters
and the master secret key which is used to issue partial private
keys for the entities (i.e., vehicles or RSUs). To generate
the public system parameters para� and the master secret
key (ξ, λ), the TA first runs Setup(κ) of our CASS to get
para = 〈

G1,G2, ê, P, Ppub, H1 ∼ H6
〉

and λ, and then does
the following:

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: PPAAS FOR SAFETY WARNING SYSTEM IN FOG-CLOUD BASED VANET 323

1) Choose a secure symmetric key encryption scheme
EK (·)/DK (·) and a key ξ , where ξ , EK (·) and DK (·)
are the key, encryption algorithm and decryption algo-
rithm corresponding to the symmetric key encryption
scheme; choose a secure certificateless signature scheme
�sk(·)/Vpk(·), where �sk(·)/Vpk(·) is the signature gen-
eration/verification algorithm.

2) Set (ξ, λ) as the master secret key and set the system
public key as Ppub = λP .

3) Publish para� = 〈
para, EK (·)/DK (·),�sk(·)/Vpk(·)

〉
.

C. Registration

Each entity (vehicle or RSU) in the system has to
be registered with the TA to generate its private-public
key pair(s).

For a vehicle, the TA generates a pool of pseudonyms and
the corresponding partial private keys for the vehicle at first,
since the vehicle has to change its pseudonym to protect
its privacy. The full private-public key pairs of the vehicle
are generated based on the corresponding partial private keys
and used to generate signcrypted traffic-related messages.
The detailed process is described in the following Vehicle
Registration protocol.

Vehicle Registration: Let the vehicle is Vi . The protocol has
following steps: 1)

1) Vi first submits registration request (RI DVi , ñ) to the
TA through a secure channel, where RI DVi is its real
identity and ñ is the number of pseudonym-partial
private key pairs requested.

2) Upon receiving the registration request, the TA sets the
pseudonym of Vi as pi, j = Encξ (RI DVi 	 j)	vp j (1 ≤
j ≤ ñ), where vp j refers to a valid period. The TA then
runs PPK(λ, pi, j) of our CASS to get partial-private key
Di, j . Finally, PD = {pi, j , Di, j }ñ

j=1 is sent to Vi through
the secure channel.

3) After receiving PD, Vi runs UKG(Di, j) of our CASS to
get the corresponding full private key (xVi , j , Di, j) and
public key PVi , j for 1 ≤ j ≤ ñ.

Unlike a vehicle, we just need to generate a long-time full
private-public key pair for an RSU, since we do not need to
protect the privacy of the RSU. To generate the key pair for
an RSU, the TA first generates a partial private key based on
the real identity of the RSU, then the RSU generates its long-
time full private-public key pair based on this partial private
key. The detailed process is described in the following RSU
Registration protocol.

RSU Registration: Let the RSU be Ri . The protocol runs as
follows:

1) Ri sends its real identity RI DRi to the TA through a
secure channel.

2) Upon receiving the identity of Ri , the TA runs
PPK(λ, RI DRi) of our CASS to get the partial-private
key DRi of Ri and sends DRi to Ri through the secure
channel.

3) Once Ri receives DRi , it runs UKG(DRi) of our CASS
to get its long-time full private key (xRi , DRi).

D. Message Delivery

In this stage, vehicles generate signcrypted traffic-related
messages and deliver them to their nearby RSUs.

In our scheme, each RSU has to periodically broadcast its
public key and a signature on the public key signed using
�sk(·)/Vpk(·) and a fresh aggregate keyword used to ensure
secure signature aggregation in its communication range.
When a vehicle enters the communication range of an RSU,
it has to verify the validity of the signature on the public key of
the RSU. We note that, since the RSUs are connected through
a wired network, a vehicle may pre-download all the public
key-signature pairs of all RSUs on his driving route and check
the validity of the public keys in advance.

Assume a vehicle Vi with current pseudonym pi, j , public
key PVi , j and full private key (xVi , j , Di, j) enters Rl ’s commu-
nication range, Rl ’s public key is PRl whose validity is already
verified, and the current aggregate keyword broadcasted by
Rl is �. Suppose Vi will send a traffic-related message
mi = T si ||Loni ||Lati ||Dreci ||Sdi ||Aci [27] to Rl , where T si ,
Loni , Lati , Dreci , Sdi and Aci represent timestamp, longi-
tude, latitude, direction, speed, and acceleration, respectively.
It runs SignCrypt(mi ,�t , pi j , RI DRl , PVi , PRl) of our CASS
to get the signcrypted traffic-related messages (i.e., ciphertext
Ci = (Ri , ci , si)) and sends Ci to Rl .

E. Fog-Cloud Based Message Processing

In a high density traffic scenario, an RSU will receive
many ciphertexts from surrounding vehicles in a short period
of time. If these ciphertexts are unsigncrypted one by one,
it will seriously affect the response time of a safety warning
system and is not suitable for time critical application. Further,
if the RSU transmits these ciphertexts to the CS without
compression, it will cause heavy communication and storage
overheads. In this stage, signcrypted traffic-related messages
under the same aggregate keyword received by a fog node
(i.e., an RSU) in a period of time, i.e., a batch period, are
unsigncrypted to get the corresponding traffic-related messages
and aggregated into an aggregated ciphertext. With the traffic-
related messages, the RSU then can generate and broadcast a
safety warning message based on a prediction algorithm. The
details of fog-cloud based message process come as follows:

Suppose an RSU Rl received n ciphertexts
{Ci = (Ri , ci , si)}n

i=1 under the same aggregate keyword
� from V1, . . . , Vn in a batch period, it first runs the
AggUnSignCrypt ({Ci}n

i=1,�, RIDRl , PRl , skRl) of our
CASS to get the pseudonym of the senders (i.e., V1, . . . , Vn),
the traffic-related messages {mi }n

i=1 and an aggregated
ciphertext C = ({R}n

i=1, {ci }n
i=1, S). Then Rl runs

Pre({mi }n
i=1) to generate a warning message, where

Pre is a prediction algorithm in [27] and broadcasts the
warning message to the vehicles in its region if necessary.
We note that the RSU can also share these messages with
its nearby RSUs, so that they can cooperatively generate a
safety warning message (or safety warning messages) with
improved profundity and precision. Finally, the RSU forwards
the aggregated ciphertext C to the CS.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

324 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 3. The Map of The Simulation Scenario.

F. Trace

As mentioned above, a vehicle may be malicious. For
instance, a vehicle may send a fake message to an RSU.
Therefore, it should be possible to trace the real identity of
the malicious vehicle. This stage is used for the TA to recover
the real identity of a malicious vehicle.

When an RSU finds a fake message but the corre-
sponding aggregate ciphertext is valid, it will send the
pseudonym of the corresponding malicious vehicle to the
TA. Assume the pseudonym of the malicious vehicle is p∗

i j .
The TA just needs to compute RI D∗

Vi
	P∗

Vi
= Decξ (p∗

i, j) =
Decξ (Encξ (RI D∗

Vi
	P∗

Vi
)) to retrieve the real identity RI D∗

Vi
of the vehicle. It is easy to see that the TA can recover the real
identity of a vehicle in constant time. Finally, the malicious
vehicle will be punished by the TA.

VI. SIMULATION AND COMPARISON

Simulations and comparisons are presented to show the
efficiency of our PPAAS in this section.

A. Simulation

The simulations were performed with VanetMobiSim, MIR-
ACL cryptographic library and NS-3 on an Ubuntu machine
with an Intel Core i7-3700 at a frequency of 3.4 GHz.
We implemented a BN curve with 128-bit security level. The
road scenario is an area of 1.0 × 1.0 km2 shown in Fig. 3.
The vehicles were randomly generated with average speed
56 km/h. The communication range of a vehicle was 300 m.
The channel bandwidth bound was 6 Mb/s. Vehicles broad-
cast messages every 100 ms. The ciphertext package size
was 212 bytes.

Let D denote the simulation area, LD denote the total
number of vehicles in D, τ denote a batch period, T i

w,τ denote
the average waiting time of a message sent by the i -th vehicle
before it is processed by an RSU in τ , T Nτ

ver denote the time
cost of aggregating and unsigncrypting the ciphertexts received
by the RSU in τ , Nauth,τ denote the maximum number of
messages received by the RSU in τ that can be verified,

Fig. 4. Average Aggregation and Unsigncryption Delay.

NR,τ denote the total number of messages that received by
the RSU. We consider the following performance metrics:
Dmsgpro and Rloss . Dmsgpro refers to the average aggregation
and unsigncryption delay. It is the average time delay for a
signcrypted message sent by a vehicle to be processed by an
RSU, which is defined to be: Dmsgpro = 1

LD

∑LD

i=1 T i
w,τ+T Nτ

ver .
Rloss denotes the aggregation and unsigncryption loss ratio.
It is the average probability that a message is received by an
RSU but cannot be aggregated and unsigncrypted, which is
defined to be Rloss = 1 − Nauth,τ

NR,τ
. The simulation results are

shown in Fig. 4 and Fig. 5.
Fig. 4 shows Dmsgpro for different vehicle density and

different batch period τ . It is easy to see that the average
message process delay is less than the maximum allowable
delay (i.e., 100 ms) [5]. The Dmsgpro increases with τ for
fixed vehicle density. For a fixed τ , the delay is mainly
determined by the number of vehicles, and grows slowly as
the vehicle number grows. This is due to the fact that the
execution time of our AggUnSignCrypt algorithm increases
slowly with the number of vehicles. In other words, it shows
that our PPAAS is suitable for safety warning system that
requires low latency. We note that the smaller τ is, the smaller
Dmsgpro is. However, it may increase the authentication loss
rate, as discussed below.

Fig. 5 shows Rloss for different vehicle density and different
batch period τ . It’s obvious when τ ≤ 50 ms and the number
of vehicles is big, the message loss rate is high. This is because
the aggregation authentication period is not long enough,
so that only a few messages are processed which leaves
the advantage of aggregation authentication under-represented.
When τ > 60 ms, the message loss rate is almost 0 for any
vehicle density. Given the above result, it is an appropriate
decision to set τ = 60 ms.

According to ETSI TS 101 539-3 [30], the maximum
end-to-end latency for such application is 300 ms. From
our simulation, one can observe that the delay (i.e., average
aggregation and unsigncryption delay) is less than 100 ms even
when the vehicle density is 200. Therefore, our scheme is
efficient and practical.

B. Efficiency Comparison

The efficiency of our scheme is mainly dominated by
the underlining anonymous CASS. Thus, we compare the

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: PPAAS FOR SAFETY WARNING SYSTEM IN FOG-CLOUD BASED VANET 325

Fig. 5. Average Message Loss Rate.

computation and communication costs of our anonymous
CASS with those of the existing provably secure CASSs [8],
[9], [32]–[34].

The anonymous CASSs in [8], [9], [32]–[34] are designed
from Type 1 bilinear map which is less efficient than
Type 2 bilinear map. We note that our scheme can also
be implemented using Type 1 bilinear map by simply set-
ting G1 = G2. To be fair, we compare the computation
and communication costs of our scheme implemented using
Type 1 bilinear map with those of the schemes in [8], [9],
[32]–[34]. We note that the efficiency of an anonymous CASSs
is dominated by SignCrypt and AggUnSignCrypt algorithms.
Thus, we only compare the efficiency of these two algorithms
in different anonymous CASSs.

Table II shows the comparison result regarding to the
computation cost, in which Tsm1/TmT /Tbm /TH denotes the
time cost to compute a scale multiplication operation in G1/a
multiplication operation in GT /a bilinear map operation/a hash
to group operation. We note that in the table only costly
operations are listed, i.e., multiplication and bilinear map
operations, in which a bilinear map operation is much more
costly than a multiplication operation. Even when the SS2
curve is chosen (which results in lower computation costs for
the above operations, in comparison to commonly used SSP
curve), the time costs of the operations, i.e., Tsm1 ≈ 1.448 ms,
TmT ≈ 0.018 ms, Tbm ≈ 11.979 ms, and Th ≈ 1.779 ms, are
generally much higher than the time costs of these operations
implemented on BN curve which are Tsm1 ≈ 0.113 ms,
TmT ≈ 0.019 ms, Tbm ≈ 3.733 ms, and Th ≈ 0.068 ms.
From the table, we also observe that the SignCrypt algorithms
in [8], [9], [34] and this paper do not involve bilinear map
operation, and are more efficient than that those presented
in [32], [33]. As for the AggUnSignCrypt algorithm, the
number of bilinear map operations for the scheme in [8], [32],
[33] and [34] is linear in terms of the number of ciphertext
received. In contrast, both our scheme and the scheme in [9]
only require a constant number of bilinear map operations.
Although the AggUnSignCrypt algorithm in our scheme has
two additional bilinear map operations than that of the scheme
in [9], the AggUnSignCrypt algorithm in our scheme requires
fewer multiplication operations than that of the scheme in [9].
As the number of vehicles nearby an RSU (n) increases,

TABLE II

COMPARISON OF COMPUTATION COST

Fig. 6. Computation Cost Comparison of SignCrypt.

the advantage of our AggUnSignCrypt algorithm is gradually
reflected.

Fig. 6 and Fig. 7 show the simulation results of
the SignCrypt and AggUnSignCrypt algorithms in [8], [9],
[32]–[34] and our scheme. From Fig. 6, we can see that the
time costs of the Sincrypt algorithms in [8], [9], [32]–[34] and
our scheme range from 10 ms to 1600 ms, 10 ms to 1500 ms,
20 ms to 3200 ms, 20 ms to 2500 ms and 10 ms to 1200 ms
respectively as the number of vehicles ranges from 1 to 140.
One can easily observe that the SignCrypt algorithm in our
scheme is the most efficient. From Fig. 7, we observe that
the time costs of the AggUnSignCrypt algorithms in [8], [9],
[32]–[34] and our scheme range from 50 ms to 2600 ms,
50 ms to 900 ms, 60 ms to 4000 ms and 70 ms to 750 ms
respectively as the number of vehicles ranges from 1 to 140.
Clearly, the SignCrypt algorithm in our scheme is more
efficient than those in [8], [32]–[34]. Moreover, when n > 18,
the AggUnSignCrypt algorithm in our scheme becomes more
efficient than that of the scheme in [9]. In general, the greater
the vehicle density, the greater the probability of a collision.
Therefore, our scheme is more suitable than the scheme in [9]
for deployment in large scale safety warning systems.

Table III shows the comparison result of the communica-
tion cost, where lZ∗

q
/ lG1 /lm /lI D denotes the bit-length of an

element in Z∗
q /an element in G1/a message m/an identity I D.

According to [3], lm = 100 bytes, lI D is at least 16 bytes and
lZ∗

q
= 32 bytes. We note that even SS2 curve (on which the bit

length of an element in G1 is shorter than that implemented
on the commonly used SSP curve) is chosen, the length of an
element in G1, i.e., lG1 = 77 bytes, is much higher than that
implemented on BN curve which is lG1 = 32 bytes. From
the table, we can see that the length of a single ciphertext
in [8], [32]–[34] and our anonymous CASS is 347 bytes
while the length of a single ciphertext in [9] is 610 bytes.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

326 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 7. Computation Cost Comparison of AggUnSignCrypt.

TABLE III

COMPARISON OF COMMUNICATION COST

TABLE IV

SECURITY COMPARISON

The length of an aggregated ciphertext in [8], [32]–[34] and
our anonymous CASS is 77 + 270n bytes while the length
of an aggregated ciphertext in [9] is 154 + 456n bytes.
Therefore, we can conclude that our scheme is also more
suitable for safety warning system than the scheme in [9] in
terms of communication overhead. Although the scheme in
[8], [32]–[34] and ours have the same communication over-
head, our scheme has much lower computation overhead.

C. Security Comparison

We compare the security of our scheme with that of the
existing safety warning systems based on V2I communi-
cations in [8], [9], [24], [25]. CASSs are also studied in
[32]–[34]. We may also apply these CASSs to realize safety
warning systems based on V2I communications. Therefore,
we also compare the security of our scheme with those based
on the CASSs in [32]–[34].

The comparison results are shown in Table IV, in which
DC, Auth, ECP, KER denote data confidentiality, authentica-
tion, efficiency conditional privacy and key escrow freeness

respectively. As shown in Table IV, only our scheme can
satisfy all the security requirements.

VII. SECURITY ANALYSIS

In this section, we analyze in detail how our schemes meet
the design goals.

Theorem 1: Our anonymous CASS fulfills data confiden-
tiality in the random oracle model under the co-CDH
assumption.

In the random oracle model, if there exist a PPT adversary
AI /AI I who can break data confidentiality of our scheme with
non-negligible probability 	, asking up to qi times query to
random oracle Hi(i = 1, . . . , 6), qpk queries on PK, then there
is an algorithm C who can solve the co-CDH problem with
advantage 	� ≥ 1

qpk
	.

Proof: C is given (P, a P, Q, bQ), and his aim is to
compute abP with the support of AI /AI I . C maintains the
following lists: Li ,(i ∈ [2, 5]) for query and response pairs to
random oracle Hi , L K for the user’s key pairs record, which
are initially empty. Note that, there is no need to model the
hash function H1, H6 as a random oracle in this case.

First stage: C first randomly selects λ ∈ Z∗
q and set it as

the msk, computes Ppub = λQ. Then C sends the parameters
para = 〈

G1,G2, ê, P, Ppub, H1 ∼ H6
〉

to AI /AI I and msk is
passed to AI I as well.

Second stage: AI /AI I can make some queries and C
answers these queries as follows:

H2 queries: C keeps a list L2 of tuples (�i , Ti , βi). When-
ever AI /AI I issues a query on H2(�i), if the request has
been queried before, the corresponding value in L2 will be
returned. Otherwise, C selects βi ∈R Z∗

q and sets Ti = βi Q.
Finally, C adds (�i , Ti , βi) to L2 and returns Ti to AI /AI I .

H3 queries: C keeps a list L3 of tuples (�i , Vi , γi). When-
ever AI /AI I issues a query on H3(�i), if the request has
been queried before, the corresponding value in L3 will be
returned. Otherwise, C selects γi ∈R Z∗

q and sets Vi = γi Q.
Finally, C adds (�i , Vi , γi) to L3 and returns Vi to AI /AI I .

H4 queries: C keeps a list L4 of tuples (�i ,Wi , πi).
Whenever AI /AI I issues a query on H4(πi), if the request
has been queried before, the corresponding value in L2 will be
returned. Otherwise, C selects πi ∈R Z∗

q and sets Wi = πi Q.
Finally, C adds (�i ,Wi , πi) to L4 and returns Wi to AI /AI I .

H5 queries: C keeps an initially empty list L5 of
tuple (Ui , Ri , Pj , Ki). Whenever AI /AI I issues a query on
H5(Ui , Ri , Pj), C does as follows: 1) Check if ê(a P, d j bP) =
ê(P,Ui) for all j = 1, . . . , n. If there is a value J , which is
satisfies this equation, C outputs d−1

j Ui and stops. 2) Search
the list L5 for a tuple (Ui , Ki) for some vale of Ki . If such a
tuple exists, C returns Ki to AI /AI I . Otherwise, if ê(Ri , Pj) =
ê(P,Ui), select Ki ∈R {0, 1}k , return Ki as answer and add
(Ui , Ri , Pj , Ki) to L5.

PK queries: C keeps a list L K of tuples (I Di , xi , Pi),
chooses I ∈R [1, qpk]. On receiving a query P K (I Di), C
returns the same answer, if the request has been queried before.
Otherwise, C selects xi ∈R Z∗

q and does as follows: If i = I ,
compute Pi = xi a P , add (I Di , xi , Pi) to L K and return Pi

to AI /AI I . Else, compute Pi = xi P , add (I Di , xi , Pi) to L K

and return Pi to AI /AI I .

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: PPAAS FOR SAFETY WARNING SYSTEM IN FOG-CLOUD BASED VANET 327

PPK queries: Given a query on P P K (I Di), Since C knows
the msk, it can generate partial private key in the usual manner.
Note that, only AI may issue this type of query, since the AI I

can generate partial private key with the master private key by
itself.

SK queries: Given a query on SK (I Di) from AI /AI I ,
C first make P K (I Di) query then finds the tuple (I Di , xi , Pi)
in L K . If I Di = I DI , C aborts; otherwise, returns xi .

RPK queries: AI can choose any valid public key for a user
with identity I Di . On receiving a query RPK (IDi , P �

i), C first
finds the tuple (IDi , xi , Pi) in L K , if there is no such tuple,
C first makes a P K (I Di) query and updates (I Di , xi , Pi) to
(I Di ,⊥, P �

i). Note that, AI cannot issue this query on any
receiver (since the public key of RSU will not be able to be
replaced by anyone in our PPAAS) and AI I cannot make this
type of query.

SignCrypt queries: Given a query on SignCrypt (�i ,mi ,
I Di , Pi , I D j , Pj) from AI /AI I , C first makes H2(�i),
H3(�i), H4(�i) if they have not been queried before,
then recovers (�i , Ti , βi) from L2, (�i , Vi , γi) from L3,
(�i ,Wi , πi) from L4, and generates ciphertext as follows:
If I Di �= I DI and the public key of I Di haven’t been
replaced by AI , C generates Ci as per the SignCrypt algo-
rithm using the sender’s private key and receiver’s public
key. If I Di �= I DI but the public key of I Di have been
replaced by AI or I Di = I DI (hence, I D j �= I DI),
C generates Ci as follows: choose ri ∈R Z∗

q , compute

Ri = ri P , Ui = ri Pj , make a H5(Ui , Ri , Pj) query to
obtain Ki and set ci = Ki ⊕ (mi	I Di	PI Di), compute
si = λH1(I Di , 0) + γi Pi + hiλH1(I Di , 1) + hiπi Pi + ri Ti ,
where hi = H6(Pi	Pj 	I D j 	Ri	�i	mi). Finally, return Ci =
(Ri , ci , si) to AI /AI I .

AggUnsignCrypt queries: On receiving a query on
AggUnSignCrypt ({Ri}n

i=1, {ci }n
i=1, S, ID j ,�) from AI /AII ,

C makes H2(�i), H3(�i),H4(�i) queries if they have not been
queried before, then recovers (�i , Ti , βi) from L2, (�i , Vi , γi)
from L3, (�i ,Wi , πi) from H4, (I D j , x j , Pj) from L K , and
for i ∈ [1, n], does the following: If I D j �= I DI , does as per
the AggUnSignCrypt algorithm. Otherwise, dose as follows:
search L5 to look for a tuple (Ui , Ri , I D j , Ki), for different
values of Ui , such that ê(Ri , Pj) = ê(P,Ui). If such an entry
exists, the correct value of Ui is found (since C can not com-
pute Ui), retrieve mi using the corresponding Ki . Otherwise,
place (∗, Ri , I D j , Ki) with a random value Ki ∈R {0, 1}k on
list L5, retrieve mi using this Ki and return (C, {mi }n

i=1).
Third stage: At the end of the second stage, AI /AI I

outputs two message sets M∗
0 = {m∗

0,i }n
i=1 and M∗

1 =
{m∗

1,i}n
i=1, an aggregate keyword �∗ and n + 1 identi-

ties {I D∗
i }n

i=1 and I D∗
R . If I D∗

R �= I DI , C fails. Other-
wise, it constructs a challenge ciphertext as follows: obtain
{(I D∗

i , x∗
i , P∗

i)}n
i=1 from L K , set R∗

i = diψ(bQ) with ran-
dom {di ∈R Z

∗
q}n

i=1, select a random bit μ, then obtains
hash value {Ki }n

i=1 from H5 oracle, (�∗, T ∗, α∗) from H2
oracle, (�∗, V ∗, β∗) from H3 oracle, and (�∗,W∗, π∗) from
H4 oracle. The component of c∗

i and s∗
i are set to be

c∗
i = Ki ⊕ (m∗

μ,i	I D∗
i 	PI D∗

i
) and s∗

i = λH1(I D∗
i , 0)+ x∗

i ψ
(V ∗) + hi (λH1(I D∗

i , 1) + x∗
i ψ(W

∗)) + α∗
i R∗

i respectively,

where hi = H6(P∗
i 	P∗

j 	I D∗
j 	R∗

i 	�∗
i 	m∗

μ,i). Finally, return
({R∗

i }n
i=1, {c∗

i }n
i=1, S∗ = ∑n

i=1 s∗
i) to AI /AI I .

Final stage: AI /AI I can perform new queries, which are
treated in the same manner as the second stage. At the end of
the simulation, AI /AI I will output μ�.

Now we compute the probability of C solving the given
instance of co-CDH problem. When analyzing the advantage
of C, we consider the following four events: E1: AI /AI I

choose I DI as the receiver’s identity to be challenged, that
is I D∗

j = I DI . E2: C does not abort as a result of any SK
query of AI /AI I . E3: AI /AI I win the game, that is μ� = μ.
E4: AI /AI I performed a challenge related query on H5
oracle. C succeeds if all of the above four events happen.
Obviously, the probability of C’s success is 	� = Pr [E1∧E2∧
E3 ∧ E4] ≥ 1

qpk
	.

Theorem 2: Our anonymous CASS fulfills unforgeability in
the random oracle model under the co-CDH assumption.

In the random oracle model, if there is a PPT adversary
AI /AI I who can forge an aggregated signcrypt ciphertext of
our CASS with a non-negligible probability 	, asking up to
qi times query to random oracle Hi(i = 1, . . . , 6) qk queries
on PPK, qs queries on SignCrypt. Then there is an algorithm
C who can solve the co-CDH problem with advantage 	� ≥
(1− 1

q1
)qpk (1− 1

max(qpk,q1)
1
q2
(1− 1

q �
6
))qs × 1

max(qpk,q1)
1
q2
(1− 1

q �
6
)	

Proof: C is given (P, a P, Q, bQ), and his aim is to
compute abP with the support of AI /AI I . C maintains the
following lists: Li (i = 1, . . . , 6) for query and response pairs
to random oracle Hi , L K for the user’s key pairs record, which
are initially empty. C first chooses a bit b ∈R {0, 1}. If b = 0,
C plays the game according to the strategy for AI , otherwise
plays according to the strategy for AI I . Strategies for different
adversaries are described in detail below.

First stage: As for AI I , C sets Ppub = bQ, para = �G1,
G2, ê, P, Ppub, H1 ∼ H6

〉
and sends para to the AI . As for

AI I , C selects λ ∈ Z∗
q as msk, sets Ppub = λQ, and sends

para = 〈
G1,G2, ê, P, Ppub, H1 ∼ H6

〉
and msk to AI I .

Second stage: AI /AI I can make some queries and C
answers these queries as follows:

H1 queries: C keeps a list L1 of tuples (I Di , αi,0, α
�
i,0,

αi,1, α
�
i,1, Qi,0, Qi,1). C picks I ∈R [1, q1]. Whenever

C receives a query H1(IDi , j), (j ∈ {0, 1}) from AI ,
C does the following: 1) If there is a tuple (I Dk, αk,0, α

�
k,0,

αk,1, α
�
k,1, Qk,0, Qk,1) in L1 such that I Di = I Dk , return

Qk, j . 2) Else if i = I , choose αi,0, α
�
i,0, αi,1, α

�
i,1 ∈R Z∗

q ,
compute Qi,0 = αi,0 P +α�

i,0a P , Qi,0 = αi,1 P+ α�
i,1a P , add

(I Di , αi,0, α
�
i,0, αi,1, α

�
i,1, Qi,0, Qi,1) to L1 and return Qi, j .

3) Else randomly choose αi,0,αi,1 ∈R Z∗
q , compute α�

i,0 = 0,
α�

i,1 = 0, Qi,0 = αi,0 P , Qi,1 = αi,1 P , add (I Di , αi,0, α
�
i,0,

αi,1, α
�
i,1, Qi,0, Qi,1) to L1 and return Qi, j .

Note that when consider AI I , we need not model H1 as a
random oracle.

H2 queries: C keeps a list L2 of tuples (�i , Ti , βi), picks
J ∈R [1, q2]. Whenever AI /AI I issues a query H2(�i), if the
request has been queried before, the corresponding value in
L2 will be returned.. Otherwise, C selects βi ∈R Z∗

q , if i = J ,

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

328 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

computes Ti = βi Q, else computes Ti = βi bQ. Finally, C adds
(�i , Ti , βi) to L2 and returns Ti to AI /AI I .

H3 queries: C keeps a list L3 of tuples (�i , Vi , γi , γ
�
i).

Whenever AI /AI I issues a query H3(�i), if the request has
been queried before, the corresponding value in L3 will be
returned. Otherwise, C randomly selects γi ∈R Z∗

q /γi , γ
�
i ∈R

Z∗
q and computes Vi = γi Q/Vi = γi Q+γ �

i bQ. Finally, C adds
(�i , Vi , γi ,⊥)/(�i , Vi , γi , γ

�
i) to L3 and returns Vi .

H4 queries: C keeps a list L4 of tuples (�i ,Wi , πi , π
�
i).

Whenever AI /AI I issues a query H4(�i), if the request has
been queried before, the corresponding value in L3 will be
returned. Otherwise, C randomly selects πi ∈R Z∗

q /πi , π
�
i ∈R

Z∗
q and computes Wi = πi Q/Wi = πi Q + π �

i bQ. Finally,
C adds (�i ,Wi , πi ,⊥)/(�i ,Wi , πi , π

�
i) to L4 and returns Wi .

H5 queries: C keeps a list L5 of tuples (Ui , Ri , P K , Ki).
Whenever AI /AI I issues a query H5(Ui , Ri , P K), C returns
the same answer from L5 if the request has been queried
before. Otherwise, C randomly selects Ki ∈R {0, 1}k , returns
Ki to AI /AI I and adds (Ui , Ri , P K , Ki) to L5.

H6 queries: C keeps a list L6 of tuples (Pi , Pj , I D j , Ri ,
�i ,mi , hi). Whenever AI /AI I issues a query H6(Pi , Pj ,
I D j , Ri ,�i ,mi), C gives the same answer from L6 if the
request have been queried before. Otherwise, C dose as
follows:

• For a query of AI , C makes H1(I Di , 0) query,
finds (I Di , αi,0, α

�
i,0, αi,1, α

�
i,1, Qi,0, Qi,1) from L1 and

does as follows: 1) If I Di = I DI and �i =
�J , (here, we assume that AI can ask at most
q �

6 ≤ q6 times such kind of queries) choose
K ∈ [1, q �

6]. If this is the K -th query, set hi =
−α�

i,0/α
�
i,1, add (Pi , Pj , I D j , Ri ,�i ,mi , hi) to L6 and

return hi ; otherwise, random select hi ∈R Z
∗
q , add

(Pi , Pj , ID j , Ri ,�i ,mi , hi) to L6 and return hi . 2) Else,
select hi ∈R Z∗

q , add (Pi , Pj , I D j , Ri ,�i ,mi , hi) to L6
and return hi .

• For a query of AI I , C makes H3(�i), H4(�i), P K (I Di)
queries, finds (�i , Vi , γi , γ

�
i) from L3, (�i ,Wi , πi , π

�
i)

from L4, (IDi , xi , Pi) from L K and does the following:
1) If �i = �J ,Pi = PM (here, we assume that
AI I can ask at most q �

6 ≤ q6 times such kind of
queries) choose K ∈ [1, q �

6]. If this is the K -th query,
set hi = −γ �

i /π
�
i , add (Pi , Pj , I D j , Ri ,�i ,mi , hi)

to L6 and return hi ; otherwise, select hi ∈R Z∗
q ,

add (Pi , Pj , I D j , Ri ,�i ,mi , hi) to L6 and return
hi . 2) Else, randomly select a hi ∈R Z∗

q , add
(Pi , Pj , I D j , Ri ,�i ,mi , hi) to L6 and return hi .

PPK queries: C keeps a list L K of tuple (I Di , xi , Di,0,
Di,1, Pi). Note that only AI may issue this type of query,
since AI I can generate partial private key by itself. When
AI makes P P K (IDi), C returns the same answer from L K

if the request have been queried before. Otherwise, C checks
if there is a tuple (I Di , αi,0, α

�
i,0, αi,1, α

�
i,1, Qi,0, Qi,1) in L1,

if no, C makes an H1 query on I Di, j for j = 0 or 1,
finally does as follows: 1) If I Di = I DI , abort. 2) Else if
there is a tuple (I Di , xi , Di,0, Di,1, Pi) in L K , set Di,0 =
αi,0ψ(Ppub), Di,1 = αi,1ψ(Ppub) and return (Di,0, Di,1). 3)
Else, set Di,0 = αi,0ψ(Ppub), Di,1 = αi,1ψ(Ppub), xi = Pi =
⊥, add (I Di , xi , Di,0, Di,1, Pi) to L K and return Di,0, Di,1.

PK queries: Given a query P K (I Di), C returns the same
answer from L K if the request has been queried before.
Otherwise, C does as follows: 1) For a query of AI , if there’s
a tuple (I Di , xi , Di,0, Di,1, Pi) in L K and the public key Pi

of I Di is ⊥, choose x �
i ∈R Z∗

q , compute P �
i = x �

i P , return P �
i

and update (IDi , xi , Di,0, Di,1, Pi) to (IDi , x �
i , Di,0, Di,1, P �

i).
Otherwise, choose xi ∈R Z∗

q , compute Pi = xi P , return Pi , set
Di,0 = Di,1 = ⊥ and add (I Di , xi , Di,0, Di,1, Pi) to L K . 2)
For a query of AI I , C keeps a list L K of tuples (I Di , xi , Pi),
chooses M ∈R [1, qpk], selects xi ∈R Z∗

q and does as follows:
If i = M , compute Pi = xi a P , add (I Di , xi , Pi) to L K and
return Pi . Otherwise, set Pi = xi P , add (I Di , xi , Pi) to L K

and return Pi .
SK queries: Given a query SK(IDi), C returns the same

answer from L K if the request has been queried before. Oth-
erwise, C makes P K (I Di) query, finds (I Di , xi , Di,0, Di,1,
Pi)/(I Di , xi , Pi) in L K and return xi to AI /AI I . Note that
when answering queries of AI , xi may be ⊥ and C will abort
when AI I makes SK (I DM).

RPK queries: AI can choose any valid public key for
a user with identity I Di . Given a query RP K (IDi , P �

i),C finds (IDi , xi , Di,0, Di,1, Pi) from L K , if there’s no such
tuple, C makes a P K (I Di) query, then updates (I Di , xi , Di,0,
Di,1, Pi) to (I Di ,⊥, Di,0, Di,1, P �

i). Note that, AI I can’t
make this type of query.

SignCrypt queries: Given a query SignCrypt (�i ,mi ,
I Di , Pi , I D j , Pj), C makes H2(�i), H3(�i), H4(�i) queries
if they haven’t been queried before, then recovers (�i , Ti , βi)
from L2, (�i , Vi , γi ,⊥/γ �

i) from L3, (�i ,Wi , πi , ⊥/π �
i) from

L4. Note that for a query of AI , C also makes H1(I Di , 0) and
H1(I Di , 1) queries if they haven’t been queried before, and
recovers (I Di , αi,0, α

�
i,0, αi,1, α

�
i,1, Qi,0, Qi,1) from L1, then

does as follows:
• For a query of AI , C does the following: a) If I Di =

I DI ,�i = �J , and hi = −α�
i,0/α

�
i,1, choose ri ∈R

Z∗
q , compute Ui = ri Pj , make H5(Ui , Ri , Pj) query

to obtain Ki , compute ci = Ki⊕ (mi	IDi 	PI Di) and
recover (Pi , Pj , I D j , Ri ,�i ,mi , hi) from L6. Finally,
compute si = αi,0ψ(Ppub) + γi Pi + αi,1hiψ(Ppub)+
πi hi Pi + riψ(Ti), and return Ci = (Ri , ci , si). b) Else
if I Di = I DI ,�i = �J , abort. c) Else if I Di =
I DI , choose ri ∈R Z∗

q , set Ri = ri P − β−1
i (Qi,0+

hi Qi,1). Then recover (I D j , x j , D j,0, D j,1, Pj) from
L K , set Ui = x j Ri , make H5(Ui , Ri , Pj) query to
get Ki , compute ci = Ki ⊕ (mi	I Di 	PI Di), recover
(Pi , Pj , I D j , Ri , �i ,mi , hi) from L6, compute si =
γi Pi + πi hi Pi + riψ(Ti) and return Ci = (Ri , ci , si).
d) Else, select ri ∈R Z

∗
q , compute Ui = ri Pj and make

a H5(Ui) query to obtain Ki , then compute ci = Ki⊕
(mi	I Di 	PI Di) and recover (Pi , Pj , I D j , Ri ,�i ,mi , hi)
from L6, set si =αi,0ψ(Ppub)+ γi Pi + αi,1hiψ(Ppub)+
πi hi Pi+ riψ(Ti) and return Ci = (Ri , ci , si).

• For a query of AI I , C does following: a) If �i =
�J , Pi = PM , and hi = −γ �

i /π
�
i , select ri ∈R Z∗

q ,
compute Ri = ri P , Ui = ri Pj , make a H5(Ui , Ri , Pj)
query to obtain Ki , set ci = Ki ⊕ (mi	I Di 	PI Di),
recover (Pi , Pj , I D j , Ri ,�i ,mi , hi) from L6, set si =
λ(H1(I Di , 0)+hi H1(I Di , 1))+γi Pi +πi hi Pi+ riψ(Ti)

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: PPAAS FOR SAFETY WARNING SYSTEM IN FOG-CLOUD BASED VANET 329

and return Ci = (Ri , ci , si). b) Else if �i =�J , Pi = PM ,
abort. c) Else if Pi = PM , choose ri ∈R Z∗

q , set Ri =ri P−
β−1

i (γ �
i + π �

i hi)Pi , recover (I D j , x j , D j,0, D j,1, Pj)
from L K , compute Ui = x j Ri , make a H5(Ui , Ri , Pj)
query to obtain Ki , set ci = Ki ⊕ (mi	I Di 	PI Di),
recover (Pi , Pj , I D j , Ri ,�i ,mi , hi) from L6, set si =
λ(H1(I Di , 0)+hi H1(I Di , 1))+(γi+πi hi)Pi+riψ(Ti) and
return Ci = (Ri , ci , si). d) Else, select ri ∈R Z

∗
q , compute

Ri = ri P , Ui = ri Pj and make a H5(Ui , Ri , Pj) query
to obtain Ki , compute ci = Ki ⊕ (mi	I Di	PI Di) and
recover (Pi , Pj , I D j , Ri ,�i ,mi , hi) from L6, set si =
λ(H1(I Di , 0)+hi H1(I Di , 1))+ xiψ(Vi)+ xi hiψ(Wi)+
riψ(Ti) and return Ci = (Ri , ci , si).

AggUnSignCrypt queries: On receiving a query
AggUnSignCrypt ({Ri}n

i=1, {ci }n
i=1, S, I D j ,�) from AI

/AI I , C makes H2(�i), H3(�i), H4(�i) queries if they
have not been queried before, then recovers (�i , Ti , βi)
from L2, (�i , Vi , γi ,⊥/γ �

i) from L3, (�i ,Wi , πi ,⊥/π �
i)

from H4, (I D j , x j , D j,0, D j,1, Pj)/(I D j , x j , Pj) from
L K , and for i ∈ [1, n], does the following: compute
Ui = x j Ri and search (Ui , Ri , I D j , Ki) in L5. If such
entry exists, compute mi	I Di 	PI Di = Ki ⊕ ci , obtain
(Pi , Pj , I D j , Ri ,�i ,mi , hi) from L6. Check whether the
verify equation holds, if so, return mi . Otherwise, return
⊥. Otherwise, select Ki ∈R {0, 1}k , retrieve mi and verify
using these values, add (Ui , Ri , I D j , Ki) to L5 and return
(C = ({Ri }n

i=1, {ci }n
i=1, Si), {mi }n

i=1).

Third stage: Eventually, AI /AI I outputs a set of n + 1
users’ identity {I D∗

i }n
i=1, I D∗

j , n messages {m∗
i }n

i=1, an aggre-
gate keyword �∗ and a forged aggregated ciphertext C∗ =
({R∗

i }n
i=1, {c∗

i }n
i=1, S∗).

In order to compute abP , C recovers (�∗, T ∗, β∗) from
L2, (�∗, V ∗, γ ∗, ⊥/γ �∗) from L3, (�∗,W∗, π∗,⊥/π �∗)
from L4, and for all i, i = [1, n] recovers hi from L6,
(I Di , xi , Pi) from L K . For AI , C should also recover
(IDi , αi,0, α

�
i,0, αi,1, α

�
i,1, Qi,0, Qi,1) from L1, for all

i, i = [1, n]. Moreover, it’s required that �∗ = �J

and there exists i ∈ [1, n] such that I D∗
i = I DI ,

h∗
i �= −α�

i,0/α
�
i,1 and SignCrypt (�∗,m∗

i , I D∗
j , ∗)

has never been queried. As for AI I , it’s required that
�∗ = �J and there exists i ∈ [1, n] such that P∗

i = PM ,
h∗

i �= −γ �∗
i /π

�∗
i and SignCrypt (�∗,m∗

i , I D∗
i , ∗) has never

been queried. Without loss of generality, we let i = 1.
The forged ciphertext must satisfy ê(S∗, Q) = ê(

∑n
i=1 Q∗

i,0+∑n
i=1h∗

i Q
∗
i,1, Ppub)ê(

∑n
i=1 P∗

i , V ∗)ê(
∑n

i=1h∗
i P∗

i ,W∗)ê(
∑n

i=1 R∗
i ,

T ∗). Otherwise, C aborts.
If C does not abort, C compute abP = (α�∗

1,0 +h∗
1α

�∗
1,1)

−1

(S∗−∑n
i=2 α

∗
i,0ψ(Ppub)− ∑n

i=2 α
∗
i,1ψ(Ppub)−γ ∗ ∑n

i=1 P∗
i −

π∗ ∑n
i=1 h∗

i P∗
i − β∗ ∑n

i=1 R∗
i − (α∗

1,0 + h∗
1α

∗
1,1)ψ(Ppub)) or

abP =(γ �∗x∗
1 +π∗h∗

1x∗
1)

−1(S∗ − λ(
∑n

i=1 Q∗
i,0+∑n

i=1 Q∗
i,1)−∑n

i=2 x∗
i ψ(V

∗)−∑n
i=2 h∗

i x∗
i ψ(W

∗)−β∗ ∑n
i=1 R∗

i −γ ∗ P∗
1 −

π∗h∗
i P∗

1), where Q∗
i, j = H1(I Di , j), j ∈ {0, 1}.

Now we compute the probability of C solving the given
instance of co-CDH problem. The following four events are
considered necessary for the success of for C: E1: C does not
abort as a result of any of AI ’s PPK queries/AI I ’s SK queries.
E2: C does not abort as a result of any of AI /AI I ’s SignCrypt

queries. E3: AI /AI I forge a valid and nontrivial aggregated
ciphertext. E4: Event E3 occurs, �∗ = �J and there exists
i ∈ [1, n] such that I D∗

i = I DI and h∗
i �= −α�∗

i,0/α
�∗
i,1

or P∗
i = PM ,h∗

i �= −γ �∗
i /π

�∗
i (as mentioned previously,

we assume i = 1). C succeeds if all of the above four events
happen. Obviously, 	� ≥ (1 − 1

q1
)qpk (1 − 1

max(qpk,q1)
1
q2
(1 −

1
q �

6
))qs × 1

max(qpk,q1)
1
q2
(1− 1

q �
6
)	

Theorem 3: Our anonymous CASS is sender anonymity in
the random oracle model under the co-CDH assumption.

The proof of this theorem is basically the same as The-
orem 1, expect that the challenge stage. In the challenge
stage, the C first obtains {(I D∗

i, j , x∗
i, j , P∗

i, j)}n
i=1 where j =

{0, 1} from L K . Then, it sets R∗
i = dibP with randomly

selected {di ∈R Z∗
q}n

i=1 and selects a random bit μ. C
obtains hash value {Ki }n

i=1 from H5 oracle, (�∗, T ∗, α∗) from
H2 oracle, (�∗, V ∗, β∗) from H3 oracle, and (�∗,W∗, π∗)
from H4 oracle. The component c∗

i and s∗
i are set to be

c∗
i = Ki ⊕ (m∗

i 	I D∗
μ,i	PI D∗

μ,i
) and s∗

i = λH1(I D∗
μ,i , 0) +

x∗
i V ∗+ hi (λH1(I D∗

μ,i , 1)+x∗
i W∗)+α∗

i R∗
i respectively, where

hi = H6(P∗
i 	P∗

j 	I D∗
j 	R∗

i 	�∗
i 	m∗

μ,i). Finally, the C gives
({R∗

i }n
i=1, {c∗

i }n
i=1, S∗ = ∑n

i=1 s∗
i) to AI I .

Theorem 4: Our PPAAS satisfies data confidentiality.
Proof: In our scheme, the traffic-related message sent by

a vehicle is signcrypted by the SignCrypt algorithm of our
CASS. According to Theorem 1, no PPT attacker can learn
any information about the content of the message. That means
only the intended RSU can obtain the traffic-related message.
Therefore, our PPAAS holds data confidentiality.

Theorem 5: Our PPAAS satisfies authentication.
Proof: According to Theorem 2, there is no PPT attacker

who can forge a valid ciphertext. Therefore, our PPAAS
achieves authentication.

Theorem 6: Our PPAAS satisfies efficient conditional
privacy.

Proof: According to Theorem 1 and 3, except the receiver
(an RSU), no PPT adversary can distinguish whether two
messages are from the same sender and extract the sender’s
real identity. Therefore, if an RSU is semi-trusted, no mali-
cious vehicle or external attacker can violate the privacy of
a vehicle. That is, as long as the designated RSU is not
corrupted, the pseudonym of the sender will not be available to
an attacker. In this case, the vehicle does not need to change its
pseudonym. However, we note that RSUs are deployed along
the roadsides. An RSU has the risk of being corrupted by an
attacker. In this case, obviously, the attacker may learn the
pseudonym of a vehicle. However, a vehicle will only stay
in the communication range of the corrupted RSU for a short
period of time. When the vehicle moves to the communication
range of another RSU that is not corrupted by the attacker, the
attacker still cannot learn the pseudonym of the vehicle even
the pseudonym of the vehicle has not changed. Therefore, the
attacker is unlikely to find the location history of a vehicle
based on the vehicle’s pseudonym. Considering the facts that
the RSUs will only be occasionally corrupted and only the
designated RSU can access the pseudonym of a vehicle,
vehicles in our scheme do not need to update their pseudonyms
frequently. Finally, once a vehicle is found to be malicious, the

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

330 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

TA can retrieve its real identity (See Section V-F). Therefore,
our PPAAS achieves efficient conditional privacy.

Theorem 7: Our PPAAS is key escrow freeness.
Proof: In our PPAAS, only a vehicle/RSU knows its

full private key. Therefore, our PPAAS achieves key escrow
freeness.

VIII. CONCLUSION

We proposed a PPAAS for safety warning system in fog-
cloud based VANTEs based on a new anonymous CASS which
fulfills data confidentiality, unforgeability, sender anonymity
and key escrow freeness. Compared with the existing solu-
tions, our scheme is more efficient than the existing ones in
terms of computation, communication and storage costs, and
achieves the security goal of efficient conditional privacy for
the first time. Simulation results show that our scheme has low
latency and suitable for practical applications.

REFERENCES

[1] L. Zhang, Q. Wu, J. Domingo-Ferrer, B. Qin, and C. Hu, “Distributed
aggregate privacy-preserving authentication in VANETs,” IEEE Trans.
Intell. Transp. Syst., vol. 18, no. 3, pp. 516–526, Mar. 2017.

[2] S. Lv and Y. Liu, “PLVA: Privacy-preserving and lightweight V2I
authentication protocol,” IEEE Trans. Intell. Transp. Syst., early access,
Feb. 24, 2021, doi: 10.1109/TITS.2021.3059638.

[3] L. Zhang, C. Hu, Q. Wu, J. Domingo-Ferrer, and B. Qin, “Privacy-
preserving vehicular communication authentication with hierarchical
aggregation and fast response,” IEEE Trans. Comput., vol. 65, no. 8,
pp. 2562–2574, Aug. 2016.

[4] Y. Wang, Y. Ding, Q. Wu, Y. Wei, B. Qin, and H. Wang, “Privacy-
preserving cloud-based road condition monitoring with source authenti-
cation in VANETs,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 7,
pp. 1779–1790, Jul. 2019.

[5] L. Zhang, X. Meng, K.-K. R. Choo, Y. Zhang, and F. Dai, “Privacy-
preserving cloud establishment and data dissemination scheme for
vehicular cloud,” IEEE Trans. Dependable Secure Comput., vol. 17,
no. 3, pp. 634–647, Jun. 2020.

[6] H. Cheng, M. Shojafar, M. Alazab, R. Tafazolli, and Y. Liu, “PPVF:
Privacy-preserving protocol for vehicle feedback in cloud-assisted
VANET,” IEEE Trans. Intell. Transp. Syst., early access, Oct. 13, 2021,
doi: 10.1109/TITS.2021.3117950.

[7] N. R. Tadapaneni, “Role of fog computing in the Internet of Things,”
Int. J. Sci. Res. Eng. Trends, vol. 180, no. 32, pp. 8887–8975,
2019.

[8] L. Nkenyereye, C. H. Liu, and J. Song, “Towards secure and privacy
preserving collision avoidance system in 5G fog based Internet of
Vehicles,” Future Gener. Comput. Syst., vol. 95, pp. 488–499, Jun. 2019.

[9] W. Wang, L. Wu, W. Qu, Z. Liu, and H. Wang, “Privacy-preserving
cloud-fog–based traceable road condition monitoring in VANET,” Int. J.
Netw. Manage., vol. 31, no. 2, p. e2096, Mar. 2021.

[10] M. Li, L. Zhu, and X. Lin, “Privacy-preserving traffic monitor-
ing with false report filtering via fog-assisted vehicular crowdsens-
ing,” IEEE Trans. Services Comput., vol. 14, no. 6, pp. 1902–1913,
Nov. 2021.

[11] H. A. Khattak, S. U. Islam, I. U. Din, and M. Guizani, “Integrating fog
computing with VANETs: A consumer perspective,” IEEE Commun.
Standards Mag., vol. 3, no. 1, pp. 19–25, Mar. 2019.

[12] H. Li, G. Zhao, L. Qin, H. Aizeke, X. Zhao, and Y. Yang, “A survey
of safety warnings under connected vehicle environments,” IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 5, pp. 2572–2588, May 2021.

[13] M. Azees, P. Vijayakumar, and L. J. Deboarh, “EAAP: Efficient anony-
mous authentication with conditional privacy-preserving scheme for
vehicular ad hoc networks,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 9, pp. 2467–2476, Sep. 2017.

[14] M. Armbrust et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[15] P. Vijayakumar, M. Azees, S. A. Kozlov, and J. J. P. C. Rodrigues,
“An anonymous batch authentication and key exchange protocols for
6G enabled VANETs,” IEEE Trans. Intell. Transp. Syst., early access,
Aug. 4, 2021, doi: 10.1109/TITS.2021.3099488.

[16] H. Artail and N. Abbani, “A pseudonym management system to achieve
anonymity in vehicular ad hoc networks,” IEEE Trans. Dependable
Secure Comput., vol. 13, no. 1, pp. 106–119, Jan. 2016.

[17] H. H. Nie, Y. P. Li, and Q. H. Wu, “A privacy-preserving V2I authen-
tication scheme without certificates,” J. Inf. Sci. Eng., vol. 33, no. 4,
pp. 1025–1040, 2017.

[18] A. W. Dent, “Aggregate signcyprion,” Int. Assoc. Cryptol. Res. (IACR)
Cryptol. ePrint Arch., Tech. Rep., 2021, p. 200. [Online]. Available:
https://ia.cr/2012/200

[19] J. Grover, A. Jain, S. Singhal, and A. Yadav, “Real-time VANET
applications using fog computing,” in Proc. SSIC, 2018, pp. 683–691.

[20] H. A. Khattak, S. U. Islam, I. U. Din, and M. Guizani, “Integrating fog
computing with VANETs: A consumer perspective,” IEEE Commun.
Standards Mag., vol. 3, no. 1, pp. 19–25, Mar. 2019.

[21] C. Huang, R. Lu, and K.-K. R. Choo, “Vehicular fog computing:
Architecture, use case, and security and forensic challenges,” IEEE
Commun. Mag., vol. 55, no. 11, pp. 105–111, Nov. 2017.

[22] Y. Yao, X. Chang, J. Mišić, and V. Mišić, “Reliable and secure
vehicular fog service provision,” IEEE Internet Things J., vol. 6, no. 1,
pp. 734–743, Feb. 2019.

[23] M. R. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio,
“Cooperative collision avoidance at intersections: Algorithms and exper-
iments,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1162–1175,
Sep. 2013.

[24] J. Molina-Gil, P. Caballero-Gil, and C. Caballero-Gil, “Aggregation and
probabilistic verification for data authentication in VANETs,” Inf. Sci.,
vol. 262, pp. 172–189, Mar. 2014.

[25] Q. Huang, N. Li, Z. Zhang, and Y. Yang, “Secure and privacy-preserving
warning message dissemination in cloud-assisted Internet of Vehicles,”
in Proc. IEEE CNS, Jun. 2019, pp. 1–8.

[26] S. K. Bhoi and P. M. Khilar, “IJS: An intelligent junction selection based
routing protocol for VANET to support ITS services,” Int. Scholarly Res.
Notices, vol. 2014, pp. 1–14, Oct. 2014.

[27] X. Xu, K. Liu, K. Xiao, H. Ren, L. Feng, and C. Chen, “Design and
implementation of a fog computing based collision warning system in
VANETs,” in Proc. IEEE Symp. Product Compliance Eng.-Asia (ISPCE-
CN), Dec. 2018, pp. 1–6.

[28] V2X Applications; Part 1: Road Hazard Signalling (RHS) Application
Requirements Specification, document ETSI TS 101 539-1 V1.1.1,
Intelligent Transport Systems, 2013.

[29] V2X Applications; Part 2: Intersection Collision Risk Warning (ICRW)
Application Requirements Specification, document ETSI TS 101 539-2
V1.1.1, Intelligent Transport Systems, 2018.

[30] V2X Applications; Part 3: Longitudinal Collision Risk Warning (LCRW)
Application Requirements Specification, document ETSI TS 101 539-1
V1.1.1, Intelligent Transport Systems, 2013.

[31] S. S. D. Selvi, S. S. Vivek, J. Shriram, S. Kalaivani, and C. P. Rangan,
“Identity based aggregate signcryption schemes,” in Proc. INDOCRYPT,
2009, pp. 13–16.

[32] H. Lu and Q. Xie, “An efficient certificateless aggregate signcryption
scheme from pairings,” in Proc. Int. Conf. Electron., Commun. Control
(ICECC), Sep. 2011, pp. 132–135.

[33] Z. Eslami and N. Pakniat, “Certificateless aggregate signcryption:
Security model and a concrete construction secure in the random
Oracle model,” J. King Saud Univ.-Comput. Inf. Sci., vol. 26, no. 3,
pp. 276–286, Sep. 2014.

[34] S. Basudan, X. Lin, and K. Sankaranarayanan, “A privacy-preserving
vehicular crowdsensing-based road surface condition monitoring sys-
tem using fog computing,” IEEE Internet Things J., vol. 4, no. 3,
pp. 772–782, Jun. 2017.

[35] C. Zhou, Z. Zhao, W. Zhou, and Y. Mei, “Certificateless key-insulated
generalized signcryption scheme without bilinear pairings,” Secur. Com-
mun. Netw., vol. 2017, pp. 1–17, Aug. 2017.

[36] H. Yu and R. Ren, “Certificateless elliptic curve aggregate sign-
cryption scheme,” IEEE Syst. J., early access, Aug. 2, 2021, doi:
10.1109/JSYST.2021.3096531.

[37] J. Liu, L. Wang, and Y. Yu, “Improved security of a pairing-free
certificateless aggregate signature in healthcare wireless medical sensor
networks,” IEEE Internet Things J., vol. 7, no. 6, pp. 5256–5266,
Jun. 2020.

[38] E. R. Magsino and I. W.-H. Ho, “Roadside unit allocation for fog-
based information sharing in vehicular networks,” in Proc. 1st ACM
Int. Workshop Smart Cities Fog Comput., Nov. 2018, pp. 7–12.

[39] B. Cao, Z. Sun, J. Zhang, and Y. Gu, “Resource allocation in 5G IoV
architecture based on SDN and fog-cloud computing,” IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 6, pp. 3832–3840, Jun. 2021.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TITS.2021.3059638
http://dx.doi.org/10.1109/TITS.2021.3117950
http://dx.doi.org/10.1109/TITS.2021.3099488
http://dx.doi.org/10.1109/JSYST.2021.3096531

YANG et al.: PPAAS FOR SAFETY WARNING SYSTEM IN FOG-CLOUD BASED VANET 331

[40] L. Wei, J. Cui, Y. Xu, J. Cheng, and H. Zhong, “Secure and light-
weight conditional privacy-preserving authentication for securing traffic
emergency messages in VANETs,” IEEE Trans. Inf. Forensics Security,
vol. 16, pp. 1681–1695, 2021.

[41] J. Liu et al., “Secure intelligent traffic light control using fog comput-
ing,” Future Gener. Comput. Syst., vol. 78, pp. 817–824, Jan. 2018.

[42] P. Vijayakumar, V. Chang, L. J. Deborah, B. Balusamy, and P. G. Shynu,
“Computationally efficient privacy preserving anonymous mutual and
batch authentication schemes for vehicular ad hoc networks,” Future
Gener. Comput. Syst., vol. 78, pp. 943–955, Jan. 2018.

[43] L. Zhang, “OTIBAAGKA: A new security tool for cryptographic mix-
zone establishment in vehicular ad hoc networks,” IEEE Trans. Inf.
Forensics Security, vol. 12, no. 12, pp. 2998–3010, Dec. 2017.

[44] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for cryptog-
raphers,” Discrete Appl. Math., vol. 156, no. 16, pp. 3113–3121, 2008.

[45] J. Zhang, H. Zhong, J. Cui, Y. Xu, and L. Liu, “SMAKA: Secure
many-to-many authentication and key agreement scheme for vehicular
networks,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 1810–1824,
2021.

Yafang Yang received the M.S. degree from the
College of Mathematics and Statistics, Chongqing
University, China, in 2018. She is currently pur-
suing the Ph.D. degree with the School of Com-
puter Science and Technology, Fudan University,
China. Her research interests include information
security, (certificateless) public key cryptography,
applied cryptography, and VANET security.

Lei Zhang (Member, IEEE) received the Ph.D.
degree in computer engineering from Universitat
Rovira i Virgili, Tarragona, Spain. Since then, he has
been with Universitat Rovira i Virgili, as a Post-
Doctoral Researcher. He is currently a Full Professor
with the Software Engineering Institute, East China
Normal University, Shanghai, China. He has been
a holder/coholder of more than ten China/Spain-
funded (key) projects. His fields of activity are infor-
mation security, VANET security, cloud security,
data privacy, and network security. He has authored

over 90 publications. He has served in the program committee of more
than 70 international conferences in information security and privacy. He is
also an editor of several international journals.

Yunlei Zhao received the Ph.D. degree in computer
science from Fudan University, Shanghai, China,
in 2004. He joined the Hewlett-Packard European
Research Center, Bristol, U.K., as a Post-Doctoral
Researcher, in 2004. Since 2005, he has been with
Fudan University, where he is currently a Pro-
fessor with the School of Computer Science. His
research interests are the theory and applications
of cryptography.

Kim-Kwang Raymond Choo (Senior Member,
IEEE) received the Ph.D. degree in information
security from the Queensland University of Tech-
nology, Australia, in 2006. He currently holds the
Cloud Technology Endowed Professorship with The
University of Texas at San Antonio (UTSA). He is
the Founding Co-Editor-in-Chief of ACM Distrib-
uted Ledger Technologies: Research & Practice and
the Founding Chair of IEEE TEMS Technical Com-
mittee on Blockchain and Distributed Ledger Tech-
nologies. He also serves as the Department Editor for

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, and the Associate
Editor for IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUT-
ING, and IEEE TRANSACTIONS ON BIG DATA. He is an ACM Distinguished
Speaker and the IEEE Computer Society Distinguished Visitor (2021–2023), a
Web of Science’s Highly Cited Researcher (Computer Science—2021, Cross-
Field—2020), and the recipient of the 2019 IEEE Technical Committee on
Scalable Computing Award for Excellence in Scalable Computing (Middle
Career Researcher).

Yan Zhang received the B.S. degree (Hons.) from
the School of Software Engineering, Jiangxi Normal
University, China, and the master’s degree from the
Software Engineering Institute, East China Normal
University, China. Her research interests include
VANET security and data privacy.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on May 05,2022 at 11:14:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

