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Abstract—A remarkable breakthrough in mathematics in re-
cent years is the proof of the long-standing conjecture: sphere
packing in the E8 lattice is optimal in the sense of the best density
for sphere packing in R8. In this work, we design a mechanism
for asymmetric key consensus from noise (AKCN), referred to as
AKCN-E8, for error correction and key consensus. As a direct
application, we present a practical key encapsulation mechanism
(KEM) from the ideal lattice based on the ring learning with
errors (RLWE) problem.

Compared with NewHope-KEM that was the second round
candidate of the National Institute of Standards and Technol-
ogy (NIST) post-quantum cryptography (PQC) standardization,
our AKCN-E8 KEM scheme overcomes some limitations and
shortcomings of NewHope-KEM. Compared with some other
dominating KEM schemes based on the variants of LWE, specifi-
cally Kyber and Saber, AKCN-E8 has a comparable performance
but enjoys much flexible shared-key sizes. Specifically, the key
encapsulated by AKCN-E8-512 (resp., 768, 1024) has the size of
256 (resp., 384, 512) bits. Flexible key size renders us stronger
security against quantum attacks, more powerful and economic
ability of key transportation, and better matches the demand in
interactive protocols like TLS where parties need to negotiate
the security parameters including the shared key length.

Index Terms—post-quantum cryptography, error correction,
lattice, key encapsulation mechanism, ring learning with errors
problem.

I. INTRODUCTION

ADvancements in quantum computing have spurred the
development of new public-key cryptographic primitives

that are conjectured to be secure against quantum attacks.
One promising class of these primitives is based on lattices,
leading to key encapsulation mechanisms (KEM) based on the
learning with errors (LWE) problem [31]. For cryptographic
usage, compared with the classic hard lattice problems such as
SVP and CVP, the learning with error (LWE) problem, and its
variant learning with rounding (LWR), are proven to be much
more versatile [36]. Nevertheless, LWE-based cryptosystems
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are usually less efficient, which was then resolved by the
introduction of the ring-LWE (RLWE) problem [27] from
ideal lattice. Among RLWE-based asymmetric primitives,
NewHope-KEM [34] is one of the prominent KEM schemes,
which is a variant of NewHope-Usenix [1] (winner of the
2016 Internet Defense Prize), and was a candidate in the
second round of the NIST post-quantum cryptography (PQC)
standardization competition.

In this work, we review the modular and generalized
framework, explicitly proposed in [22, 23], for designing
and analyzing KEM schemes from LWE and its variant (in
particular, RLWE). This modular and generalized framework
brings us to focus on one key building block for achieving
KEMs from LWE and its variants, which is referred to as
asymmetric key consensus (AKC). Putting into this framework,
the underlying (one-dimensional) AKC mechanisms proposed
in [25, 27, 36] encode one key bit per polynomial coefficient.

One-dimensional AKC was further optimized in [22, 23].
The work [35] extended one-dimensional reconciliation mech-
anisms into multi-dimensional ones based on the lattice code
in D2 and D4. where one key bit is encoded into two (resp.,
four) polynomial coefficients by using the D2 (resp., D4)
code. This multi-dimensional approach can allow either to
improve the security of the resulting scheme or to decrease the
probability of decryption failures. The D4 code was adapted
into key exchange scheme in [1] and later into KEM schemes
in [22, 34].

Newhope-KEM has two variants based on the polynomial
dimension n = 512 or 1024, referred to as NewHope-512
and NewHope-1024. Specifically, in order to derive the 256-
bit shared-key, NewHope-512 (resp., NewHope-1024) uses the
D2 (resp., D4) lattice code. Note that, on the same polynomial
dimension, the D2 lattice code can derive more bits of shared-
key but at the cost of relatively higher error probability, while
the D4 code has a better error correction ability but with the
size of shared-key halved. This causes NewHope-KEM to be
less modular or flexible. For protocol simplicity, modularity
and flexibility, we may hope for a new code mechanism
that combines, in essence, the advantages of both the D2

code and the D4 code, while saving from or alleviating the
disadvantages of them both.

A. Our Contributions

The encoding and decoding algorithms of E8 were proposed
by Conway and Sloane [7]. Recently, a remarkable break-
through in mathematics is the proof of the long-standing con-
jecture: sphere packing in the E8 lattice is optimal in the sense
of the best density for packing in R8 [41]. However, to apply
the algorithms of [7] to the KEM setting, we need to specify a
one-to-one mapping from binary strings to lattice points in E8.
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A natural way to specify such a mapping is to choose a base
for the lattice E8. Then, transforming the lattice points to the
binary strings may involve Gaussian elimination. Compared to
this method, our encoding and decoding algorithms integrate
the coding of E8 and the mapping from binary strings to E8

together. This improves the efficiency by avoiding Gaussian
elimination. Finally, we adapt the integrated E8 code into the
KEM setting, by combining it with the AKCN scheme of [22].
The resultant code is referred to as AKCN-E8.

As a direct application of the AKCN-E8 code, we present a
practical KEM scheme based on the RLWE assumption, which
is referred to as AKCN-E8-KEM. Compared with NewHope-
KEM [34], our AKCN-E8-KEM has the following advantages:

• Modular and unified constructions: The same E8 code is
employed for all the three dimensions n = 512, n = 768
and n = 1024.

• For the recommended case of n = 1024, the size of
shared-key is doubled: 512 bits of AKCN-E8 versus 256
bits of NewHope.

• At the same security level and the same length of shared-
key, AKCN-E8 can enjoy both more compact ciphertext
size and lower error probability.

• More flexible parameter selection for tradeoffs among
security, ciphertext size and error probability.

NewHope-KEM does not provide a set of parameters for
the dimension n = 768. In comparison, the KEM schemes
based on the variants of LWE currently in the third round of
NIST PQC standardization, specifically Kyber that is based
on module-LWE (MLWE) and Saber that is based on module-
LWR (MLWR), do provide this level of parameters. One
reason is that the standard NTT technique requires that n
be power-of-two and q mod 2n = 1. Recent advances on
the variants of NTT [2, 24, 29, 42, 43] allow us to choose
NTT-friendly parameters in a more flexible way. In this work,
we provide the parameter set of n = 768 and q = 7681 for
AKCN-E8 (referred to as AKCN-E8-768), by employing the
P3-NTT proposed in [24] that enjoys better paralleability and
modularity. We then give detailed comparisons among AKCN-
E8, Kyber and Saber. Briefly speaking, in comparison with
Kyber and Saber, AKCN-E8 has a comparable performance
but enjoys much flexible sizes of the shared-key to be encap-
sulated. Specifically, the key encapsulated by AKCN-E8-512
(resp., 768, 1024) has the size of 256 (resp., 384, 512) bits,
compared to the fixed key size of 256 bits for Kyber and Saber.

We make a comprehensive analysis of the error probability
of the AKCN-E8-KEM scheme. As a by-product result, we
also show that the errors in different positions for RLWE-
based KEM schemes are independent when the polynomial
dimension tends to be infinity. This is a complementary result
to the dependency result for concrete parameters presented at
PQC 2019 [11], which might also be of independent interest.

For performance benchmarks and comparisons with
NewHope, Kyber and Saber, we provide thorough implemen-
tations of the proposed AKCN-E8 scheme, covering the pa-
rameters n ∈ {512, 768, 1024} and q ∈ {12289, 3329, 7681}.
The implementation codes are available from http://github.
com/AKCN-E8.

On the importance and desirability of flexible shared-
key size. The shared-key size in bits for both NewHope-512
and NewHope-1024 is 256. Also, the shared-key size for both
Kyber and Saber is fixed to be 256 bits, which is intrinsic to the
dimension of the underlying module lattice and is inflexible to
change (for example, it is uneasy to employ a module lattice
of dimension n = 384). In comparison, the shared-key size of
AKCN-E8-512 (resp., -768, -1024) is 256 (resp., 384, 512)
bits. Here, we would like to highlight the importance and
desirability of larger shared-key size.
• Doubling the shared-key size means more powerful and

economic ability of key transportation, at about the same
level of security and bandwidth.

• A typical application of KEM in practice is to encapsulate
a pair of keys (K1,K2), where K1 (resp., K2) is used as
the key for symmetric-key encryption like AES (resp., for
message authentication code like HMAC). When instan-
tiated with AES-256 (resp., AES-192), each of K1 and
K2 has size of 256 (resp., 192) bits. In these application
scenarios, running a KEM scheme (encapsulating key of
192 or 256 bits) twice is much less efficient than running
a KEM scheme (encapsulating key of 384 or 512 bits)
once.

• For some application scenarios demanding critical secu-
rity guarantees, symmetric-key cryptographic primitives
of larger key size (particularly, key size of 512 bits) are
already in use in practice.

• Fixing key size for different security levels is less flexible.
A more flexible and desirable way is to allow users to
negotiate the key sizes according to different security
levels and application scenarios. For example, according
to different security levels (specifically, 128, 192, 256
bit classic security), in TLS 1.3 [38] it mandates three
options for the master secrecy size: 256, 384 and 512, by
negotiating and employing the secp256r1, secp384r1 and
secp512r1 curves respectively.

• Doubling the shared-key size is important for the targeted
security level against Grover’s search algorithm, and
against the possibility of more sophisticated quantum
cryptanalysis in the long run. Note that for all the pro-
tocols of NewHope-1024, AKCN-E8-1024, Kyber-1024
and FireSaber, their target security level is about 230-
bit post-quantum security. Even if the underlying lattice
hard problems provide this level of hardness, the 256-bit
shared-key may not. Though the standardization of post-
quantum symmetric key cryptography is not considered
yet, it is expected that the key size will increase to
remain the same security level in the post-quantum era.
For example, the updated quantum analysis on AES [20]
overall reduces the original estimate of quantum cost in
bits against AES (specified in the call for proposals of
NIST PQC standardization [31]) between 11 and 13, and
this line of research is quite active now.

B. Related Work
The Leech lattice is also proven to be the densest for sphere

packing in dimension 24 [6], and has already been used for er-
ror correction in communication protocols [8, 40], for example
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in the IEEE 802.11a WLAN standard https://standards.ieee.
org/standard/802 11-2016.html. On the one hand, its encoding
and decoding are more complex and less efficient than the
AKCN-E8 code. On the other hand, and more importantly,
it is difficult to find parameters of RLWE [33], since it is
a 24-dimension lattice. For RLWE-based cryptosystems, we
usually use number-theoretic transform (NTT) algorithms to
speed up the polynomial multiplications. The NTT algorithms
can make the most use of the computational resource when
the dimension of RLWE is a power of 2. However, one cannot
hope for setting the parameter n to be a power of 2 and a
multiple of 24 at the same time. The same issue also occurs
when setting the key length for Leech lattice, since the key
size usually will be a multiple of 12. In comparison, the E8

lattice doesn’t have the aforementioned problems.
The recommended parameter set of NewHope-KEM aims

for about 256-bit classic security and about 230-bit post-
quantum security (pq-sec). For the KEM proposals in the sec-
ond round of NIST PQC standardization, the LAC algorithm
[26] is another RLWE-based KEM scheme. To our knowledge,
NewHope-KEM and LAC are the only two RLWE-based KEM
proposals left in the second round of NIST PQC standardiza-
tion. LAC uses a different approach for building KEM from
RLWE: it uses a small q = 251 that is not NTT-friendly,
and uses an error correction code (ECC) to lower the failure
probability. LAC also proposes parameters for about 256-bit
classic security but with a relatively higher failure probability.
Compared with the lattice code based approach of NewHope
and this work, the KEM schemes based on the ECC-based
approach is usually more complex, and is harder for constant-
time implementations. Recently, it is also shown that the LAC
algorithm does not achieve its claimed security level [17].

In the second round of NIST PQC standardization, there
are only NewHope and LAC that are based on the RLWE
problem. Some other well-known lattice-based KEM candi-
dates, e.g., Kyber [5] and Saber [10], are based on the module
lattice. The underlying polynomials of Kyber and Saber are
of dimension n = 256. This leaves no space for employing
lattice codes or ECC codes for extra error correction, besides
direct error correction with the AKC mechanism. In addition,
Saber uses a special modulus q that is a power-of-two, and as
a consequence the NTT technique cannot be used. Due to the
protocol simplicity, we suggest Kyber can be more efficient
than NewHope and AKCN-E8. But both Saber and Kyber are
hard to derive 512-bit shared-key, even if the underlying hard
problem provides about 256-bit post-quantum security. So, in
general, AKCN-E8 is incomparable with Kyber and Saber.

II. PRELIMINARIES

A string or value α means a binary one, and |α| is its binary
length. For any real number x, bxc denotes the largest integer
that is less than or equal to x, and bxe = bx + 1/2c. For
any positive integers a and b, denote by lcm(a, b) the least
common multiple of them. For any i, j ∈ Z such that i < j,
denote by [i, j] the set of integers {i, i+ 1, · · · , j − 1, j}. For
any positive integer t, we let Zt denote Z/tZ. The elements
of Zt are represented, by default, as [0, t − 1]. Nevertheless,

sometimes, Zt is explicitly specified to be represented as
[−b(t− 1)/2c, bt/2c].

If S is a finite set, then |S| is its cardinality, and x← S is
the operation of picking an element uniformly at random from
S. For two sets A,B ⊆ Zq , define A+B , {a+b|a ∈ A, b ∈
B}. For an addictive group (G,+), an element x ∈ G and a
subset S ⊆ G, denote by x+S the set containing x+s for all
s ∈ S. For a set S, denote by U(S) the uniform distribution
over S. For any discrete random variable X over R, denote
Supp(X) = {x ∈ R | Pr[X = x] > 0}.

We use standard notations and conventions below for
writing probabilistic algorithms, experiments and interactive
protocols. If D denotes a probability distribution, x← D is the
operation of picking an element according to D. If α is neither
an algorithm nor a set, x← α is simple assignment statement.
If A is a probabilistic polynomial-time (PPT) algorithm, then
A(x1, x2, · · · ; r) is the result of running A on inputs x1, x2, · · ·
and coins r. We let y ← A(x1, x2, · · ·) denote the experiment
of picking r at random and letting y be A(x1, x2, · · · ; r). By
Pr[R1; · · · ;Rn : E] we denote the probability of event E,
after the ordered execution of random processes R1, · · · , Rn.
A function f(λ) is negligible, if for every c > 0 there exists
an λc such that f(λ) < 1/λc for all λ > λc.

A. Key Encapsulation Mechanism (KEM)

We review the definition of KEM given in
[12, 18]. A key encapsulation mechanism KEM =
(KeyGen,Encaps,Decaps) consists of three algorithms.
On a security parameter κ, the PPT key generation algorithm
KeyGen outputs a key pair (pk, sk), where pk also defines a
finite key space K. The PPT encapsulation algorithm Encaps,
on input pk, outputs a tuple (K, c) where c is said to be
an encapsulation of the key K which is contained in key
space K. The deterministic polynomial-time decapsulation
algorithm Decaps, on input sk and an encapsulation c,
outputs either a key K := Decaps(sk, c) ∈ K or a special
symbol ⊥/∈ K to indicate that c is not a valid encapsulation.
We call KEM δ-correct if

Pr[Decaps(sk, c) 6= K|(pk, sk)← KeyGen(1κ);

(K, c)← Encaps(pk)] ≤ δ.
The security notion, indistinguishability under chosen ci-

phertext attacks (CCA), is defined w.r.t. Fig. 1. For any PPT
adversary A, define its CCA-advantage as AdvCCAKEM (A) :=
|Pr[GAME CCA outputs 1]]−1/2|. We say the KEM scheme
is CCA-secure, if for any sufficiently larger security parameter
and any PPT adversary A, AdvCCAKEM (A) is negligible.

B. Public-Key Encryption (PKE)

We review the definition of PKE given in [16, 18]. A public-
key encryption scheme is given by a triple of algorithms,
PKE = (K, E ,D), where for every sufficiently large κ ∈ N.
• KeyGen, the key-generation algorithm, is a probabilistic

polynomial-time (in κ) algorithm which on input 1κ

outputs a pair of strings, (pk, sk), called the public and
secret keys, respectively. This experiment is written as
(pk, sk)← KeyGen(1κ).
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Fig. 1: CCA game for KEM

• E , the encryption algorithm, is a probabilistic polynomial-
time (in κ) algorithm that takes public key pk and
message M from the message space MSP, draws coins
r uniformly from coin space COIN, and produces ci-
phertext C := Epk(M ; r). This experiment is written as
C ← Epk(x).

• D, the decryption algorithm, is a deterministic
polynomial-time (in κ) algorithm that takes secret
key sk and ciphertext C ∈ {0, 1}∗, and returns message
M ∈ MSP.

We say a PKE scheme is δ-correct, if for every suf-
ficiently large κ ∈ N, every (pk, sk) generated by
KeyGen(1κ) and every M ∈ MSP, we always have
E[maxM∈MSP Pr[Dsk(Epk(M)) 6= M ]] ≤ δ.

Definition 1 (CCA-security). Let PKE = (KeyGen, E ,D) be
an asymmetric encryption scheme, and A = (A1,A2) be an
adversary for PKE. For κ ∈ N, define the following CCA-
advantage:

AdvCCA
A (κ) = 2 · Pr[(pk, sk)← KeyGen(1κ);

(M0,M1, st)← ADsk
1 (pk);

b← {0, 1};C∗ ← Epk(Mb) :

ADsk
2 (C∗, st) = b]− 1.

We say that the PKE scheme is CCA-secure, if for every
sufficiently large security parameter κ, and PPT adversary A,
its CCA-advantage AdvCCA

A is negligible in κ. We say the
PKE scheme is secure against chosen plaintext attacks (CPA-
secure, for short), if the advantage of A is negligible when the
access to the decryption oracle Dsk is denied.

C. The LWE, and Ring-LWE (RLWE) problems

Given positive continuous σ > 0, define the real Gaussian
function ρσ(x) , exp(−x2/2σ2)/

√
2πσ2 for x ∈ R. Let

DZ,σ denote the one-dimensional discrete Gaussian distribu-
tion over Z, which is determined by its probability density
function DZ,σ(x) , ρσ(x)/ρσ(Z), x ∈ Z. Finally, let DZn,σ

denote the n-dimensional spherical discrete Gaussian distribu-
tion over Zn, where each coordinate is drawn independently
from DZ,σ .

Given positive integers n and q that are both polynomials
in the security parameter λ, an integer vector s ∈ Znq , and a
probability distribution χ on Zq , let Aq,s,χ be the distribution
over Znq × Zq obtained by choosing a ∈ Znq uniformly
at random, and an error term e ← χ, and outputting the

pair (a, b = aT s + e) ∈ Znq × Zq . The error distribution
χ is typically taken to be the discrete Gaussian probability
distribution DZ,σ defined previously; However, as suggested
in [4] and as we shall see in Section V, other alternative
distributions of χ can be taken. Briefly speaking, the (deci-
sional) learning with errors (LWE) assumption [36] says that,
for sufficiently large security parameter λ, no probabilistic
polynomial-time (PPT) algorithm can distinguish, with non-
negligible probability, Aq,s,χ from the uniform distribution
over Znq × Zq . This holds even if A sees polynomially many
samples, and even if the secret vector s is drawn randomly
from χn [3].

For the positive integer m that is polynomial in the security
parameter λ, let n , ϕ(m) denote the toties of m, and K ,
Q(ζm) be the number field obtained by adjoining an abstract
element ζm satisfying Φm(ζm) = 0, where Φm(x) ∈ Z[x] is
the m-th cyclotomic polynomial of degree n. Moreover, let
R , OK be the ring of integers in K. Finally, given a positive
prime q = poly(λ) such that q ≡ 1 (mod m), define the
quotient ring Rq , R/qR.

We briefly review the RLWE problem, and its hardness
result [13, 27, 28]. In this work, we focus on a special case
of the RLWE problem defined in [27]. Let n ≥ 16 be a
power-of-two and q = poly(λ) be a positive prime such that
q ≡ 1 (mod 2n). Given s ← Rq , a sample drawn from
the RLWE distribution An,q,σ,s over Rq × Rq is generated
by first choosing a ← Rq, e ← DZn,σ , and then outputting
(a,a · s + e) ∈ Rq ×Rq . Roughly speaking, the (decisional)
RLWE assumption says that, for sufficiently large security
parameter λ, no PPT algorithm A can distinguish, with non-
negligible probability, An,q,σ,s from the uniform distribution
over Rq ×Rq . This holds even if A sees polynomially many
samples, and even if the secret s is drawn randomly from the
same distribution of the error polynomial e [3, 13]. Moreover,
as suggested in [1], alternative distributions for the error
polynomials can be taken for the sake of efficiency while
without essentially reducing security.

Recently, a polynomial-time (quantum) reduction from
worst-case ideal lattice problems directly to the decision
version of Ring-LWE is presented in [32]. In particular,
the reduction works for any modulus and any number field.
Besides the above special version of the RLWE problem [27],
another suggested version of the RLWE problem is defined
over the polynomial ring Rn = Z[x]/Φn+1(x), where n + 1
is a safe prime and Φn+1(x) = xn + xn−1 + · · · + x + 1 is
the (n + 1)-th cyclotomic polynomial. This ring has a wider
range of n to choose from.

Alice
σ1

k1 ∈ Zm

v ← Con(σ1, k1, params)

Bob
σ2

k2 ← Rec(σ2, v, params)

v

≈

Fig. 2: Depiction of AKC
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III. A MODULAR AND GENERALIZED FRAMEWORK FOR
PKE/KEM FROM RING-LWE

A. Building Block: Asymmetric Key Consensus

Before presenting the definition of asymmetric key con-
sensus (AKC) scheme, we first introduce a new function |·|q
relative to a positive integer q ≥ 1: |x|q= min{x mod q, q −
x mod q}, ∀x ∈ Z, where the result of modular operation is
represented in {0, ..., (q − 1)}. For instance, |−1|q= min{−1
mod q, (q + 1) mod q} = min{q − 1, 1} = 1. For any
x = (x0, x1, x2, xµ−1)T ∈ Zµq , where µ is a positive integer,
denote by ‖x‖q,1 the sum |x0|q+|x1|q+ · · ·+ |xµ−1|q .
Definition 2. An asymmetric key consensus scheme AKC =
(params,Con,Rec) is specified as follows:
• params = (q,m, g, d, aux) denotes the system parame-

ters, where q, 2 ≤ m, g ≤ q, 1 ≤ d ≤ b q2c are positive
integers, and aux denotes some auxiliary values that are
usually determined by (q,m, g, d) and could be set to be
empty.

• v ← Con(œ1, k1,params): On input of (œ1 ∈
Zµq ,k1 ∈ Zµ′

m ,params), where µ and µ′ are positive
integers, the polynomial-time conciliation algorithm Con
outputs the public hint v ∈ Zµg .

• k2 ← Rec(œ2,v,params): On input of (œ2 ∈ Zµq ,v ∈
Zµg ,params), the deterministic polynomial-time algo-
rithm Rec outputs k2 ∈ Zµ′

m .
Correctness: An AKC scheme is correct, if it holds k1 = k2

for any œ1,œ2 ∈ Zµq such that ‖œ1 −œ2‖q,1≤ d.
Security: An AKC scheme is secure, if v is independent of k1

whenever œ1 is uniformly distributed over Zµq . Specifically,
for arbitrary ṽ ∈ Zµg and arbitrary k̃1, k̃

′
1 ∈ Zµ′

m , it holds
that Pr[v = ṽ|k1 = k̃1] = Pr[v = ṽ|k1 = k̃′1], where the
probability is taken over œ1 ← Zµq and the random coins
possibly used by Con.

B. CPA-Secure PKE from AKC

Denote by (λ, n, q, σ,AKC) the system parameters, where
λ is the security parameter. q ≥ 2 is a positive prime number,
σ parameterizes the discrete Gaussian distribution DZn,σ , n
denotes the degree of polynomials in Rq where for simplicity
we assume µ|n, and Gen is a pseudorandom generator (PRG)
generating a ∈ Rq from a small seed seed ← {0, 1}κ. Let
AKC = (params,Con,Rec) be a correct and secure AKC
scheme, where params = (q, g,m, d). In this work, we mainly
consider m = 2. The AKC-based PKE from RLWE is depicted
in Figure 3 (page 6). Here, (seed,y1) serves as the public key,
while (y2,v) is the ciphertext. In the protocol description, for
presentation simplicity, the Con and Rec functions are applied
to polynomials, meaning they are applied to each group of
µ coefficients respectively. For NewHope µ = 4, while for
AKCN-E8 µ = 8. For presentation simplicity, we also referred
to k1 = k2 as the shared-key.

It is well established that, under the assumptions that (1) the
underlying AKC scheme is both correct and secure, and (2)
the (decisional) RLWE is hard, the above modular construction
of PKE scheme is CPA-secure [4, 22, 23, 25, 27, 36]. The

above modular and generalized framework for CPA-secure
PKE from LWE and its variants was explicitly proposed by
Jin and Zhao [22], by explicitly defining and studying the
underlying building tool AKC. All the previous works used
AKC implicitly in a non-black-box way.

C. Transformation from CPA-PKE to CCA-KEM
There are well-established approaches from CPA-secure

PKE to CCA-secure KEM [15, 16, 18, 19, 21, 39], with
concrete security estimation in the quantum random oracle
model (QROM). In this work, for presentation simplicity and
ease of comparison, we use the same CCA transformation
approach adopted by NewHope-KEM. The reader is referred
to [34] for more details.

IV. DESIGN AND ANALYSIS OF AKCN-E8
According to the above modular and generalized framework

from AKC to RLWE-based CPA and CCA secure KEMs, all
left is to develop a practical AKC scheme, which is referred
to AKCN-E8 to be developed and analyzed in this section. At
the heart of AKCN-E8 is a novel lattice code in E8.

We divide the coefficients of the polynomial σ1 and σ2

into n̂ = n/8 groups, where each group is composed of 8
coefficients. In specific, denote R = Z[x]/(x8 + 1), Rq =
R/qR,K = Q[x]/(x8 + 1) and KR = K ⊗ R ' R[x]/(x8 +
1). Then the polynomial σ1 can be represented as σ1(x) =
σ0(xn̂) + σ1(xn̂)x+ · · ·+ σn̂−1(xn̂)xn̂−1, where σi(x) ∈ Rq
for i = 0, 1, . . . n̂. σ2 can be divided in the same way. Then
we only need to construct the reconciliation mechanism for
each σi(x), and finally combine the keys together. To do this,
we need to first introduce the lattice E8 and its encoding and
decoding.

We construct the lattice E8 from the Extended Hamming
Code in dimension 8, which is denoted as H8 for presentation
simplicity. H8 refers to the 4-dimension linear subspace of
8-dimension linear space Z8

2.

H8 = {c ∈ Z8
2 | c = zH mod 2, z ∈ Z4}

where

H =


1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1


The encoding algorithm is straightforward: given a 4-bit

string k1, calculate k1H. This operation can be done ef-
ficiently by bitwise operations. The complete algorithm is
shown in Algorithm 1.1

Algorithm 1 AKCN-E8: Con with encoding in E8

procedure: Con(σ1 ∈ Z8
q,k1 ∈ Z4

2, params)

1: v =
⌊
g
q

(
σ1 + q−1

2 (k1H mod 2)
)⌉

mod g2

2: return v
end procedure

1For simplicity, we assume q is a prime and directly use q−1
2

in Con
(rather than bq/2e). The construction and analysis can be trivially changed to
work with q+1

2
in Con. Also, when q is an even number (e.g., power-of-two),

it should be q
2

.
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Initiator
seed← {0, 1}κ

a = Gen(seed) ∈ Rq
x1, e1 ← DZn,σ

y1 = a · x1 + e1

Responder

k2 ∈ Zn/µm

a = Gen(seed)
x2, e2 ← DZn,σ

y2 = b 2tq (a · x2 + e2)e
e′2 ← DZn,σ

σ2 = y1 · x2 + e′2 ∈ Rq
v← Con(σ2,k2, params)

σ1 = b q2ty2 · x1e ∈ Rq
k1 ← Rec(σ1,v, params)

seed,y1 ∈ Rq

y2 ∈ Rq,v ∈ Rg

Fig. 3: Depiction of RLWE-based CPA-secure PKE from AKC

The decoding algorithm finds the solution of the closest
vector problem (CVP) for the lattice E8. For any given
x ∈ R8, CVP asks which lattice point in E8 is closest to x.
Based on the structure of E8, we propose an efficient decoding
algorithm.

Fig. 4: Structure of E8.

Let C = {(x1, x1, x2, x2, x3, x3, x4, x4) ∈ Z8
2 | x1 + x2 +

x3 + x4 = 0 mod 2}. In fact, C is spanned by the up most
three rows of H. Hence, E8 = C ∪ (C + c), where c =
(0, 1, 0, 1, 0, 1, 0, 1) is the last row of H. For a given x ∈ R8,
to solve CVP of x in E8, we solve CVP of x and x − c in
C, and then choose the one that has smaller distance. For a
pictorial representation of E8, refer to Figure 4.

Algorithm 2 AKCN-E8: Rec with decoding in E8

procedure: Rec(σ2 ∈ Z8
q,v ∈ Z8

g, params)

1: k2 = DecodeE8

(⌊
q
gv
⌉
− σ2

)
2: return k2

end procedure

Then we consider how to solve CVP in C. For an
x ∈ R8, we choose (x1, x2, x3, x4) ∈ Z4

2, such that
(x1, x1, x2, x2, x3, x3, x4, x4) is closest to x. However,
x1 + x2 + x3 + x4 mod 2 may be equal to 1. In such
cases, we choose the 4-bit string (x′1, x

′
2, x
′
3, x
′
4) such that

(x′1, x
′
1, x
′
2, x
′
2, x
′
3, x
′
3, x
′
4, x
′
4) is secondly closest to x. Note

that (x′1, x
′
2, x
′
3, x
′
4) has at most one-bit difference from

(x1, x2, x3, x4). The detailed algorithm is depicted in Al-
gorithm 3. Considering potential timing attack, all the “if”
conditional statements can be implemented by constant time
bitwise operations. In practice, Decode00C and Decode01C are
implemented as two subroutines.

For Algorithm 3 (page 7), in DecodeE8
, we calculate

costi,b, where i = 0, 1, . . . , 7, b ∈ {0, 1}, which refer to the
contribution to the total 2-norm when xi = b. Decode00C solves
the CVP in lattice C, and Decode01C solves the CVP in lattice
C + c. Then we choose the one that has smaller distance.
Decodeb0b1C calculates the ki, i = 0, 1, 2, 3 such that q−12 (k0⊕
b0, k0⊕ b1, k1⊕ b0, k1⊕ b1, k2⊕ b0, k2⊕ b1, k3⊕ b0, k3⊕ b1)
is closest to x. We use mind and mini to find the second
closest vector. Finally, we check the parity to decide which
one should be returned.

The following theorem gives a condition of success of the
encoding and decoding algorithm in Algorithm 1 and Algo-
rithm 2. For simplicity, for any σ = (x0, x1, . . . , x7) ∈ Z8

q ,
we define ‖σ‖2q,2=

∑7
i=0|xi|2q .

Theorem 1. If ‖σ1−σ2‖q,2≤ (q− 1)/2−
√

2
(
q
g + 1

)
, then

k1 and k2 calculated by Con and Rec are equal.

Proof. The minimal Hamming distance of the Extended
Hamming code H8 is 4. Hence, the minimal distance in the

lattice we used is 1
2

√(
q−1
2

)2 × 4 = (q − 1)/2.
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Algorithm 3 Decoding in E8 and C

1: procedure DecodeE8(x ∈ Z8
q)

2: for i = 0 . . . 7 do
3: costi,0 = |xi|2q
4: costi,1 = |xi − q−1

2 |2q
5: end for
6: (k00,TotalCost00)← Decode00C (costi∈0...7,b∈{0,1})
7: (k01,TotalCost01)← Decode01C (costi∈0...7,b∈{0,1})
8: if TotalCost00 < TotalCost01 then
9: b = 0

10: else
11: b = 1
12: end if
13: (k0, k1, k2, k3)← k0b

14: k2 = (k0, k1 ⊕ k0, k3, b)
15: return k2

16: end procedure
17: procedure Decodeb0b1C (costi∈0...7,b∈{0,1} ∈ Z8×2)
18: mind = +∞
19: mini = 0
20: TotalCost = 0
21: for j = 0 . . . 3 do
22: c0 ← cost2j,b0 + cost2j+1,b1

23: c1 ← cost2j,1−b0 + cost2j+1,1−b1
24: if c0 < c1 then
25: ki ← 0
26: else
27: ki ← 1
28: end if
29: TotalCost← TotalCost+ cki
30: if c1−ki − cki < mind then
31: mind ← c1−ki − cki
32: mini ← i
33: end if
34: end for
35: if k0 + k1 + k2 + k3 mod 2 = 1 then
36: kmini ← 1− kmini

37: TotalCost← TotalCost+mind

38: end if
39: k = (k0, k1, k2, k3)
40: return (k,TotalCost)
41: end procedure
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We can find ε, ε1 ∈ [−1/2, 1/2]8,θ ∈ Z8 such that⌊
q

g
v

⌉
− σ2 =

q

g
v + ε− σ2

=
q

g

(
g

q

(
σ1 +

q − 1

2
k1H

)
+ ε+ θg

)
+ ε1 − σ2

=(σ1 − σ2) +
q − 1

2
k1H +

q

g
ε+ ε1 + θq

Hence, the bias from q−1
2 k1H is no larger than ‖σ1 −

σ2‖q,2+ q
g‖ε‖+

√
2 ≤ ‖σ1 − σ2‖q,2+

√
2
(
q
g + 1

)
. If this

value is less than the minimal distance (q−1)/2, the decoding
will be correct, which implies k1 = k2. �

Proposition 1. AKCN-E8 is secure. Specifically, if σ1 is
subject to uniform distribution over Z8

q , then v and k1 are
independent.

Proof. For arbitrary fixed k1, k1H mod 2 is fixed. Since σ1

is uniform random, σ1 + q
2 (k1H mod 2) is uniform random

over Zq . Thus, v is subject to the distribution b gque mod g,
where u is uniform random over Zq . Hence, v is independent
of k1. �

A. Failure Rate Analysis

Now, with respect to the CPA-secure PKE scheme described
in Figure 3 with the underlying AKC is replaced with AKCN-
E8, we analyze the correctness property by calculating its
failure rate.

Denote ε = 2t

q (ax2 + e2)− b 2tq (ax2 + e2)e. We have

σ1 − σ2 = b( q
2t

y2)x1e − (y1x2 + e′2)

= ε′ + (
q

2t
y2)x1 − (y1x2 + e′2)

=
q

2t
b2

t

q
(ax2 + e2)ex1 − ((ax1 + e1)x2 + e′2) + ε′

= (ax2 + e2 −
q

2t
ε)x1 − (ax1x2 + e1x2 + e′2) + ε′

= (e2 −
q

2t
ε)x1 − (e1x2 + e′2) + ε′,

where ε′ ∈ [− 1
2 ,

1
2 )4.

From RLWE assumption, (a,ax2 +e2) is indistinguishable
with (a,u), where u is subject to the uniform distribution.
Then, ε should be closed to 2t

q u − b 2tq ue. Let σq,t be the
standard deviation of 2t

q u − b 2tq ue. Then we can calculate
the standard deviation of each coefficients of polynomials in
σ1 − σ2 − ε′, which we denote it as s. Then we have

s2 = nσ2

(
2σ2 +

q2

22t
σ2
q,t

)
+ σ2

By the Central Limit Theorem, each coefficient of the poly-
nomials in σ1−σ2−ε′ is close to a Gaussian distribution. Also
note that ‖ε′‖2< 1. Let χ2(8) be the chi-square distribution
with mean 8. From Theorem 1, the AKCN-E8 scheme is
correct with probability

Pr

[
d′ ← χ2(8) :

√
d′ ≤ 1

s

(
q − 1

2
−
√

2

(
q

g
+ 1

)
− 1

)]

We provide a script to calculate the concrete failure rate,
which is available from http://github.com/AKCN-E8.

B. On the Failure Rate Analysis of NewHope

For the fairness of the comparison, we also provide an
estimation of NewHope [1] with the same methodology. We
mainly focus on the parameter set for NewHope-1024.

The NewHope-1024 protocol divides the 1024 coefficients
of the polynomial σ1(x) and σ2(x) into 1024/4 = 256
vectors, each of dimension 4. Then they apply the D4 lattice to
extract one bit from each vector. We firstly estimate the failure
probability of each bit, and finally take the union bound over
the 256 vectors.

Let σ1,σ2 ∈ Z4
p be two vectors obtained by the initiator

and responder, respectively. If ‖σ1−σ2‖1< (1− 2/g) · q− 2,
then the NewHope scheme is correct.

To deal with the 1-norm, we use the same obser-
vation as in [1], which asserts that, for any x ∈
R4, ‖x‖1= maxy∈{−1,+1}4 〈x,y〉. Then, ‖σ1 − σ2‖1=
maxy∈{−1,+1}4 〈σ1 − σ2,y〉. By taking union bound on all
choices of y ∈ {−1,+1}4, we only need to analyze for
an arbitrary fixed y ∈ {−1,+1}4, since the distribution of
〈σ1 − σ2,y〉 is the same for different y. Let s be the standard
deviation of 〈σ2 − σ1,y〉, then we have s2 = 4(2nσ4 + σ2).
By the Central Limit Theorem, each coordinate of σ2 − σ1

is close to a Gaussian distribution. Hence, the failure rate of
NewHope is estimated as

Pr

[
d′ ← N (0, 1) : d′ ≤ 1

s
((1− 2/g) · q − 2)

]

C. On the Tight Upper Bound of the Failure Probability

The recent work [30] suggested using Chernoff-Cramer
inequality to give a tight upper bound on the failure rate.

Theorem 2 (Chernoff-Cramer Inequality). Let D be a distri-
bution over R, and X be the sum of ` independent and identi-
cally distributed random variables X1, X2, . . . , X`. Then, for
any t ∈ R, t > 0, and any a ∈ R, we have

Pr[X ≥ a] ≤ exp
(
−ta+ ` ln(E[etXi ])

)
Specifically, Xi here is a function of 4×2 = 8 independent

random variables that are subjected to the law of Sη . Hence,
the work [30] simulates the distribution by enumerating all
possibilities of these 8 random variables, and hence takes
(2η + 1)8 ≈ 232 operations to compute the distribution of
Xi. However, in our case, if following the same analysis, this
would take (2η+ 1)8·2 ≈ 265 operations, which is impossible
to compute on an ordinary personal computer. Hence, we use
our asymptotic method to give an estimation of the failure
probability. We note that the failure probability estimated
with our asymptotic method is quite close to the tight bound
obtained in [30]. With NewHope-1024 as an instance, its
failure probability by our method (resp., by the tight bound in
[30]) is 2−424 (resp., 2−412).
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|K| n q η g t pq-sec err pk (B) cipher (B)
NewHope-512-CPA 256 512 12289 8 23 14 101 2−424 928 1088

AKCN-E8-512-S-CPA 256 512 12289 14 24 11 110 2−277 928 960
AKCN-E8-512-E-CPA 256 512 12289 8 24 10 101 2−422 928 896
AKCN-E8-512-C-CPA 256 512 12289 8 23 10 101 2−252 928 832

NewHope-512-CCA 256 512 12289 8 23 14 101 2−424 928 1120
AKCN-E8-512-S-CCA 256 512 12289 14 24 11 110 2−277 928 992
AKCN-E8-512-E-CCA 256 512 12289 8 24 10 101 2−422 928 928
AKCN-E8-512-C-CCA 256 512 12289 8 23 10 101 2−252 928 864
NewHope-1024-CPA 256 1024 12289 8 23 14 233 2−424 1824 2176

NewHope-1024-D2-CPA 512 1024 12289 8 23 14 233 2−199 1824 2176
AKCN-E8-1024-S-CPA 512 1024 12289 10 24 12 240 2−308 1824 2048
AKCN-E8-1024-E-CPA 512 1024 12289 8 24 11 233 2−381 1824 1920
AKCN-E8-1024-C-CPA 512 1024 12289 4 23 11 214 2−762 1824 1792

NewHope-1024-CCA 256 1024 12289 8 23 14 233 2−424 1824 2208
AKCN-E8-1024-S-CCA 512 1024 12289 10 24 12 240 2−208 1824 2080
AKCN-E8-1024-E-CCA 512 1024 12289 8 24 11 233 2−381 1824 1952
AKCN-E8-1024-C-CCA 512 1024 12289 4 23 11 214 2−762 1824 1824

TABLE I: Parameters for AKCN-E8-KEM and comparison with NewHope-KEM [34]. |K| refers to the size of shared-key
k1 = k2 in bits, “pk(B)” refers to the size of (y1, seed) in bytes; “cipher(B)” refers to the size of (y2, v); “pq-sec” refers to

the security of the underlying RLWE problem against the best known quantum attacks, NewHope-1024-D2 refers to the
variant of NewHope-1024 that derives 512-bit shared-key with the D2 code as in NewHope-512.

D. On the Independence of Errors in Different Positions

For ease of efficient computation, our asymptotic method
of error probability analysis assumes the independence of
errors in different positions. It was shown that for the concrete
parameters of RLWE-based KEM schemes the independency
assumption does not hold [11]. In this work, we show a
complementary result by proving the independency of errors
when n tends to be infinity.

Suppose f(x), g(x) are two polynomials of degree n, whose
coefficients are drawn independently from Gaussian. Let
h(x) = f(x) · g(x) ∈ R[x]/(xn + 1). We show that for every
two different integers 0 ≤ c1, c2 < n, the joint distribution of
(h[c1], h[c2]) will approach to the two-dimensional Gaussian
when n tends to infinity. Hence, it is reasonable to assume that
the error rates of any two different positions are independent
when n is sufficiently large. For representation simplicity, for
any polynomial f , let f [i] denote the coefficient of xi.

Lemma 1. Suppose f(x), g(x) ∈ R[x]/(xn + 1) are two
n-degree polynomials whose coefficients are drawn indepen-
dently from N (0, σ2). Let h(x) = f(x)·g(x) ∈ R[x]/(xn+1),
where h(x) is represented as an n-degree polynomial. For any
two different integers 0 ≤ c1, c2 < n, the characteristic func-
tion of the two-dimensional random vector (h[c1], h[c2]) ∈ R2

is

φc1,c2(t1, t2) = E
[
ei(t1h[c1]+t2h[c2])

]
(1)

= t1f
TAc1g + t2f

TAc2g (2)

=
n−1∏
k=0

(
1 + σ4(t21 + t22 + 2t1t2 (3)

· cos(π(c1 − c2)
2k + 1

n
))

)− 1
2

(4)

Proof. One can observe that t1h[c1] + t2h[c2] is equal to

t1

 ∑
i+j=c1

f [i]g[j]−
∑

i+j=c1+n

f [i]g[j]


+ t2

 ∑
i+j=c2

f [i]g[j]−
∑

i+j=c2+n

f [i]g[j]


= t1f

TAc1g + t2f
TAc2g. = fT (t1Ac1 + t2Ac2)g

Where f = (f [0], f [1], . . . , f [n − 1])T , g =
(g[0], g[1], . . . , g[n − 1])T , and the notations Ac1 ,Ac2

are defined by

Ac =



1
...

1
−1

...
−1


The value 1 in the first row is in the c-th column.

As t1Ac1 + t2Ac2 is symmetric, it can be orthogonally
diagonalized as PTΛP, where P is orthogonal, and Λ is di-
agonal. Hence, φc1,c2(t1, t2) = E[exp(i(Pf)TΛ(Pg))]. Since
P is orthogonal, it keeps the normal distribution unchanged.
Hence, (Pf)TΛ(Pg) equals the sum of n scaled products of
two independent one-dimensional Gaussian.

Suppose λ1, λ2, . . . , λn are the eigenvalues of t1Ac1 +
t2Ac2 , and φ is the characteristic function of the product of
two independent one-dimensional standard Gaussian. Then we
have

φc1,c2(t1, t2) =

n−1∏
k=0

φ(σ2λk) (5)

From [37], φ(t) = (1+ t2)−1/2. For λk, we further observe
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that

(t1Ac1 + t2Ac2)2 = (t21 + t22)I + t1t2(Ac1Ac2 + Ac2Ac1)

= (t21 + t22)I + t1t2(Gc2−c1 + Gc1−c2),

where

G =


1

1
. . .

1
−1


The characteristic polynomial of G is xn + 1. Hence, λk
satisfies

λ2k = t21 + t22 + 2t1t2 cos

(
π(c1 − c2)

2k + 1

n

)
By taking this into Equation 5, we derive the Equation 4.

Theorem 3. For any fixed integers 0 ≤ c1, c2 < n, c1 6= c2,
when n tends to infinity, the distribution of

(
h[c1]
σ2
√
n
, h[c2]
σ2
√
n

)
converges (in distribution) to the two-dimensional normal
distribution N (0, I2).

Proof. Let φ(t1, t2) denote the characteristic function of the
random vector

(
h[c1]
σ2
√
n
, h[c2]
σ2
√
n

)
. Then, for fixed t1, t2,

ln(φ(t1, t2)) = −1

2

n−1∑
k=0

ln

(
1 +

1

n
(t21 + t22 + 2t1t2 (6)

· cos

(
π(c1 − c2)

2k + 1

n

)
)

)
(7)

= −1

2

n−1∑
k=0

[
1

n
(t21 + t22 + 2t1t2 (8)

· cos

(
π(c1 − c2)

2k + 1

n

)
) + rk

]
(9)

= −1

2

(
t21 + t22

)
− 1

2

n−1∑
k=0

rk, (10)

where rk is the Lagrange remainders. So, |rk|≤ λ4k/2n
2.

Since λ2k ≤ (|t1|+|t2|)2, we have |rk|≤ (|t1|+|t2|)4/2n2.
When n tends to infinity, φ(t1, t2) converges pointwise

to exp(−(t21 + t22)/2), which is the characteristic function
of the two-dimensional normal distribution N (0, I2). From
Lévy’s convergence theorem, we derive that the random vector(
h[c1]
σ2
√
n
, h[c2]
σ2
√
n

)
converges in distribution to the normal distri-

bution N (0, I2).

V. PARAMETERS AND PERFORMANCE COMPARISONS

The AKCN-E8-KEM scheme that resulted from the modular
and generalized framework described in Section III, with
the underlying AKC mechanism replaced with the AKCN-
E8 scheme presented in Section IV, works on any hard
instantiation of the RLWE problem. But if n is the power
of 2, and the prime q satisfies q mod 2n = 1, then number-
theoretic transform (NTT) can be used to speed up polynomial
multiplication. The performance can be further improved by

using the Montgomery arithmetic and AVX2 instruction set
[1, 34]. As in [34], the underlying noise distribution is the
centered binomial distribution Sη: for some positive integer
η, sample (a1, · · · , aη, b1, · · · , bη)←{0, 1}2η and then output∑η
i=1(ai − bi). For the centered binomial distribution Sη ,

its standard deviation is σ =
√
η/2. In NEWHOPE [34],

q = 12289, n = 512 or n = 1024, η = 8. For ease of
comparison, we use the same CCA transformation and the
same values of (q, n) of NewHope [34] for the construction
and implementation of AKCN-E8-KEM. We use the same
script of NewHope-KEM [34] for concrete security estimation
against the underlying RLWE problem by the best known
quantum attacks, and omit the details here for presentation
simplicity. The reader is referred to [34] for the method and
script of concrete security estimation, which is also available
from https://newhopecrypto.org/.

The parameters and performance of AKCN-E8-KEM are
given in Table I. For both AKCN-E8-512 and AKCN-E8-1024,
we present three sets of parameters: “S” stands for higher
security level, “E” stands for lower error probability, and “C”
stands for smaller ciphertext size. For fairness of comparison,
the failure probability for both AKCN-E8 and NewHope
are calculated with our asymptotic method. In particular, we
introduce the NewHope-1024-D2 variant for fair performance
comparison on the same size of shared-key.

A. More Parameters and Comparisons with Kyber and Saber

The standard NTT technique requires that n be power-of-
two and 2n|(q − 1). Recent advances on the variants of NTT
[2, 24, 29, 42, 43] allow us to choose the parameters (n, q)
in a more flexible way. For example, we can use q = 7681
and q = 3329 for AKCN-E8-1024 and AKCN-E8-512. The
NTT technique proposed in [24, 29] (resp., in [2]) allows
us to use n = 768 and q = 7681 (resp., q = 3457) for
AKCN-E8-768. More parameters of AKCN-E8 enabled by
the recent advances of NTT techniques are given in Table
III (page 11). For presentation simplicity, the parameter sets
AKCN-E8-3329-512/1024-CCA (resp., AKCN-E8-7681-768-
CCA) are referred to as AKCN-E8-512/768 (resp., AKCN-E8-
768) in Tabel IV (page 11).

In Table IV, we make a brief comparison with Kyber and
Saber that are the candidate proposals now in the third round
of NIST PQC standardization. Note that the key encapsulated
by AKCN-E8-512 (resp., 768, 1024) has the size of 256 (resp.,
384, 512) bits, which is much more flexible compared to the
fixed key size of 256 bits for Kyber and Saber.

B. Implementation and Benchmark

Based on the reference implementation of NewHope-KEM,
we provide the implementations of AKCN-E8-KEM, and
make performance benchmark comparisons with the NIST ref-
erence implementations of NewHope-KEM, Kyber and Saber.
The benchmark result for the implementation of AKCN-E8-
1024-C-CCA for q = 12289, together with the performance
comparison with NewHope-KEM, is given in Table V (page
11). The benchmark results for the implementations of AKCN-
E8-512/768/1024 as specified in Table IV, together with the
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|K| n q η g t pq-sec err pk (B) cipher (B)
AKCN-E8-7681-512-CPA 256 512 7681 6 23 3 104 2−204 864 832
AKCN-E8-7681-512-CCA 256 512 7681 6 23 3 104 2−204 864 864
AKCN-E8-7681-640-CPA 320 640 7681 6 23 3 137 2−159 1072 1040
AKCN-E8-7681-640-CCA 320 640 7681 6 23 3 137 2−159 1072 1072
AKCN-E8-7681-768-CPA 384 768 7681 4 23 3 161 2−245 1280 1248
AKCN-E8-7681-768-CCA 384 768 7681 4 23 3 161 2−245 1280 1280

AKCN-E8-1024-CPA-Recom 512 1024 7681 4 24 3 227 2−303 1696 1792
AKCN-E8-1024-CPA-Option-S 512 1024 7681 6 24 2 239 2−267 1696 1960
AKCN-E8-1024-CPA-Option-C 512 1024 7681 2 23 3 208 2−471 1696 1664
AKCN-E8-1024-CCA-Recom 512 1024 7681 4 24 3 227 2−303 1696 1824

AKCN-E8-1024-CPA-Option-S 512 1024 7681 6 24 2 239 2−267 1696 1992
AKCN-E8-1024-CCA-Option-C 512 1024 7681 2 23 3 208 2−471 1696 1696

TABLE II: Recommended parameters for AKCN-E8-7681. “Recom” (resp., “Option”) stands for “Recommended” (resp.,
“Optional”). We recommend to use the same q = 7681 and η = 4 for all the three sets of parameters.

|K| n q η g t pq-sec err pk (B) cipher (B)
AKCN-E8-3329-512-CPA 256 512 3329 3 23 10 107 2−193 800 832
AKCN-E8-3329-512-CCA 256 512 3329 3 23 10 107 2−193 800 864
AKCN-E8-7681-768-CPA 384 768 7681 4 23 9 161 2−245 1280 1248
AKCN-E8-7681-768-CCA 384 768 7681 4 23 9 161 2−245 1280 1280
AKCN-E8-3329-1024-CPA 512 1024 3329 2 23 10 230 2−178 1568 1664
AKCN-E8-3329-1024-CCA 512 1024 3329 2 23 10 230 2−178 1568 1696

TABLE III: More parameters for AKCN-E8

|K| q pq-sec err pk (B) cipher (B)
AKCN-E8-512 256 3329 107 2−193 800 864

Kyber-512 256 3329 107 2−139 800 768
LightSaber 256 213 107 2−120 672 736

AKCN-E8-768 384 7681 161 2−245 1280 1280
Kyber-768 256 3329 164 2−164 1184 1088

Saber 256 213 172 2−136 992 1088
AKCN-E8-1024 512 3329 230 2−178 1568 1696

Kyber-1024 256 3329 230 2−174 1568 1568
FireSaber 256 213 236 2−165 1312 1472

TABLE IV: Comparisons with Kyber and Saber

performance comparisons with Kyber and Saber, are summa-
rized in Table VI (page 12). All the source codes are available
from http://github.com/AKCN-E8.

We implement the algorithms on macOS version 11.0, clang
version 12.0.0.31.1. We run the benchmark on 8-Core Intel
Core i7-9700K processor clocked at 3.6 GHz with Hyper-
Threading off. The code is compiled with the option -O3 -
fomit-frame-pointer -march=native. We run key generation,
encryption and decryption each for 10000 times. The reported
time and CPU cycles are the medians of the cycle counts.

AKCN-E8-1024-CCA NewHope-1024-CCA
Time(us) Cycle Time(us) Cycle

Gen 59 213371 69 249161
Enc 89 321427 101 362497
Dec 117 423812 117 421997

TABLE V: Benchmark of AKCN-E8 for q = 12289

APPENDIX

The standard NTT technique requires that q mod 2n = 1.
Recent advances on the variants of NTT [2, 29, 42, 43] allow
us to choose the module q in a more flexible way. For example,
we can use q = 7681 and q = 3329 for AKCN-E8-1024 and
AKCN-E8-512. The NTT technique proposed in [29] (resp., in
[2]) allows us to use q = 7681 (resp., q = 3457) for AKCN-
E8-768. A variant of the NTT technique [29] also allows us to
use q = 7681 for AKCN-E8-640. More parameters of AKCN-
E8 enabled by the recent advances of NTT techniques are
given in Table II and Table III. We may prefer to the AKCN-
E8-7681 parameter sets, as they share the same module q =
7681 for AKCN-E8-512, AKCN-E8-640, AKCN-E8-768 and
AKCN-E8-1024.
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